Retired Academic, Beverly, MA 01915, USA.
Kingsborough Community College, Brooklyn, NY, USA.
Eur J Cell Biol. 2022 Apr;101(2):151219. doi: 10.1016/j.ejcb.2022.151219. Epub 2022 Mar 23.
Intermediary metabolism of tumors is characterized, in part, by a dysregulation of the cholesterol biosynthesis pathway at its rate-controlling enzyme providing the molecular basis for tumor membranes (mitochondria, plasma membrane) to become enriched with cholesterol (Bloch, 1965; Feo et al., 1975; Brown and Goldstein, 1980; Goldstein and Brown, 1990). Cholesterol enriched tumor mitochondria manifest preferential citrate export, thereby providing a continuous supply of substrate precursor for the tumor's dysregulated cholesterogenesis via a "truncated" Krebs/TCA cycle (Kaplan et al., 1986; Coleman et al., 1997). Proliferating tumors shed elevated amounts of plasma membrane-derived extracellular vesicles (pmEV) compared with normal tissues (van Blitterswijk et al., 1979; Black, 1980). Coordination of these metabolic phenomena in tumors supports the enhanced intercalation of cholesterol within the plasma membrane lipid bilayer's cytoplasmic face, the promotion of outward protrusions from the plasma membrane, and the evolution of cholesterol enriched pmEV. The pmEV shed by tumors possess elevated cholesterol and concentrated cell surface antigen clusters found on the tumor cells themselves (Kim et al., 2002). Upon exfoliation, saturation of the extracellular milieu with tumor-derived pmEV could allow early onset mammalian immune surveillance mechanisms to become "blind" to an evolving cancer and lose their ability to detect and initiate strategies to destroy the cancer. However, a molecular mechanism is lacking that would help explain how cholesterol enrichment of the pmEV inner lipid bilayer might allow the tumor cell to evade the host immune system. We offer a hypothesis, endorsed by published mathematical modeling of biomembrane structure as well as by decades of in vivo data with diverse cancers, that a cholesterol enriched inner bilayer leaflet, coupled with a logarithmic expansion in surface area of shed tumor pmEV load relative to its derivative cancer cell, conspire to force exposure of otherwise unfamiliar membrane integral protein domains as antigenic epitopes to the host's circulating immune surveillance system, allowing the tumor cells to evade destruction. We provide elementary numerical estimations comparing the amount of pmEV shed from tumor versus normal cells.
肿瘤的中间代谢部分特征在于胆固醇生物合成途径的失调,该途径在其限速酶处提供了肿瘤膜(线粒体、质膜)富含胆固醇的分子基础(Bloch,1965;Feo 等人,1975;Brown 和 Goldstein,1980;Goldstein 和 Brown,1990)。富含胆固醇的肿瘤线粒体表现出优先的柠檬酸外排,从而通过“截断”的克雷布斯/三羧酸 (TCA) 循环为肿瘤失调的胆固醇生成提供持续的底物前体供应(Kaplan 等人,1986;Coleman 等人,1997)。与正常组织相比,增殖的肿瘤会释放大量的质膜衍生的细胞外囊泡(pmEV)(van Blitterswijk 等人,1979;Black,1980)。肿瘤中这些代谢现象的协调支持胆固醇在质膜脂质双层细胞质面的增强插入、质膜向外突出的促进以及富含胆固醇的 pmEV 的演化。肿瘤释放的 pmEV 具有升高的胆固醇和集中的细胞表面抗原簇,这些抗原簇存在于肿瘤细胞本身(Kim 等人,2002)。一旦剥落,肿瘤衍生的 pmEV 使细胞外环境饱和,可能使哺乳动物早期免疫监视机制对正在发展的癌症“视而不见”,并丧失检测和启动策略来破坏癌症的能力。然而,缺乏一种分子机制来帮助解释 pmEV 内层脂质双层的胆固醇富集如何使肿瘤细胞能够逃避宿主免疫系统。我们提出了一个假设,该假设得到了生物膜结构的已发表数学模型以及与各种癌症相关的数十年体内数据的支持,即富含胆固醇的内层叶层与脱落的肿瘤 pmEV 负载相对于其衍生的癌细胞的表面积呈对数膨胀相结合,共同促使原本不熟悉的膜整合蛋白结构域作为抗原表位暴露于宿主的循环免疫监视系统,使肿瘤细胞能够逃避破坏。我们提供了基本的数值估计,比较了肿瘤细胞和正常细胞释放的 pmEV 量。