Suppr超能文献

使用前馈反向传播网络预测患有血栓形成倾向的孕妇队列中的小于胎龄新生儿。

Use of a Feed-Forward Back Propagation Network for the Prediction of Small for Gestational Age Newborns in a Cohort of Pregnant Patients with Thrombophilia.

作者信息

Vicoveanu Petronela, Vasilache Ingrid Andrada, Scripcariu Ioana Sadiye, Nemescu Dragos, Carauleanu Alexandru, Vicoveanu Dragos, Covali Ana Roxana, Filip Catalina, Socolov Demetra

机构信息

Department of Obstetrics and Gynecology, 'Grigore T. Popa' University of Medicine and Pharmacy, 700115 Iasi, Romania.

Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania.

出版信息

Diagnostics (Basel). 2022 Apr 16;12(4):1009. doi: 10.3390/diagnostics12041009.

Abstract

(1) Background: Fetal growth restriction is a relatively common disorder in pregnant patients with thrombophilia. New artificial intelligence algorithms are a promising option for the prediction of adverse obstetrical outcomes. The aim of this study was to evaluate the predictive performance of a Feed-Forward Back Propagation Network (FFBPN) for the prediction of small for gestational age (SGA) newborns in a cohort of pregnant patients with thrombophilia. (2) Methods: This observational retrospective study included all pregnancies in women with thrombophilia who attended two tertiary maternity hospitals in Romania between January 2013 and December 2020. Bivariate associations of SGA and each predictor variable were evaluated. Clinical and paraclinical predictors were further included in a FFBPN, and its predictive performance was assessed. (3) Results: The model had an area under the curve (AUC) of 0.95, with a true positive rate of 86.7%, and a false discovery rate of 10.5%. The overall accuracy of our model was 90%. (4) Conclusion: This is the first study in the literature that evaluated the performance of a FFBPN for the prediction of pregnant patients with thrombophilia at a high risk of giving birth to SGA newborns, and its promising results could lead to a tailored prenatal management.

摘要

(1) 背景:胎儿生长受限是患有血栓形成倾向的孕妇中相对常见的病症。新的人工智能算法是预测不良产科结局的一个有前景的选择。本研究的目的是评估前馈反向传播网络(FFBPN)在一组患有血栓形成倾向的孕妇中预测小于胎龄(SGA)新生儿的预测性能。(2) 方法:这项观察性回顾性研究纳入了2013年1月至2020年12月期间在罗马尼亚两家三级妇产医院就诊的所有患有血栓形成倾向的孕妇的妊娠情况。评估了SGA与每个预测变量的二元关联。临床和辅助临床预测因素进一步纳入FFBPN,并评估其预测性能。(3) 结果:该模型的曲线下面积(AUC)为0.95,真阳性率为86.7%,假发现率为10.5%。我们模型的总体准确率为90%。(4) 结论:这是文献中第一项评估FFBPN在预测有生出SGA新生儿高风险的患有血栓形成倾向的孕妇方面性能的研究,其令人鼓舞的结果可能会带来个性化的产前管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fcb/9025417/cbe9ae8fd5a8/diagnostics-12-01009-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验