Suppr超能文献

线性粘弹性中的热力学限制

Thermodynamic Restrictions in Linear Viscoelasticity.

作者信息

Morro Angelo

机构信息

DIBRIS, Università di Genova, 16145 Genova, Italy.

出版信息

Materials (Basel). 2022 Apr 7;15(8):2706. doi: 10.3390/ma15082706.

Abstract

The thermodynamic consistency of linear viscoelastic models is investigated. First, the classical Boltzmann law of stress-strain is considered. The kernel (Boltzmann function) is shown to be consistent only if the half-range sine transform is negative definite. The existence of free-energy functionals is shown to place further restrictions. Next, the Boltzmann function is examined in the unbounded power law form. The consistency is found to hold if the stress functional involves the strain history, not the strain-rate history. The stress is next taken to be given by a fractional order derivative of the strain. In addition to the constitutive equations involving strain-rate histories, finding a free-energy functional, consistent with the second law, seems to be an open problem.

摘要

研究了线性粘弹性模型的热力学一致性。首先,考虑经典的应力-应变玻尔兹曼定律。结果表明,只有当半范围正弦变换为负定时,核函数(玻尔兹曼函数)才是一致的。自由能泛函的存在显示出进一步的限制。接下来,研究无界幂律形式的玻尔兹曼函数。结果发现,如果应力泛函涉及应变历史而非应变率历史,则一致性成立。接着将应力视为应变的分数阶导数给出。除了涉及应变率历史的本构方程外,找到一个与第二定律一致的自由能泛函似乎是一个未解决的问题。

相似文献

1
Thermodynamic Restrictions in Linear Viscoelasticity.线性粘弹性中的热力学限制
Materials (Basel). 2022 Apr 7;15(8):2706. doi: 10.3390/ma15082706.
3
A novel approach to nonlinear variable-order fractional viscoelasticity.一种非线性变阶分数粘弹性的新方法。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20190296. doi: 10.1098/rsta.2019.0296. Epub 2020 May 11.
5
A GENERAL RETURN-MAPPING FRAMEWORK FOR FRACTIONAL VISCO-ELASTO-PLASTICITY.分数阶粘弹塑性的通用回映框架
Fractal Fract. 2022 Dec;6(12). doi: 10.3390/fractalfract6120715. Epub 2022 Dec 1.
7
Nonlinear viscoelasticity of strain rate type: an overview.应变率型非线性粘弹性:综述
Proc Math Phys Eng Sci. 2021 Jan;477(2245):20200715. doi: 10.1098/rspa.2020.0715. Epub 2021 Jan 27.
8
Viscoelasticity using reactive constrained solid mixtures.使用反应性受限固体混合物的粘弹性。
J Biomech. 2015 Apr 13;48(6):941-7. doi: 10.1016/j.jbiomech.2015.02.019. Epub 2015 Feb 21.
9
The effects of viscoelasticity on residual strain in aortic soft tissues.粘弹性对主动脉软组织残余应变的影响。
Acta Biomater. 2022 Mar 1;140:398-411. doi: 10.1016/j.actbio.2021.11.019. Epub 2021 Nov 23.
10
A Magneto-Viscoelasticity Problem with Aging.一个与老化相关的磁粘弹性问题。
Materials (Basel). 2022 Nov 5;15(21):7810. doi: 10.3390/ma15217810.

引用本文的文献

2
A Phase-Field Approach to Continuum Damage Mechanics.一种基于相场方法的连续损伤力学
Materials (Basel). 2022 Oct 31;15(21):7671. doi: 10.3390/ma15217671.

本文引用的文献

1
Nonlinear Models of Thermo-Viscoelastic Materials.热粘弹性材料的非线性模型
Materials (Basel). 2021 Dec 10;14(24):7617. doi: 10.3390/ma14247617.
3
Advanced materials modelling via fractional calculus: challenges and perspectives.基于分数阶微积分的先进材料建模:挑战与展望。
Philos Trans A Math Phys Eng Sci. 2020 May 29;378(2172):20200050. doi: 10.1098/rsta.2020.0050. Epub 2020 May 11.
4
Fractional modeling of viscoelasticity in 3D cerebral arteries and aneurysms.三维脑动脉和动脉瘤粘弹性的分数阶建模
J Comput Phys. 2016 Oct 15;323:219-242. doi: 10.1016/j.jcp.2016.06.038. Epub 2016 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验