Suppr超能文献

The Thermal Stress Problem of Bimodular Curved Beams under the Action of End-Side Concentrated Shear Force.

作者信息

He Xiao-Ting, Wang Xin, Zhang Meng-Qiao, Sun Jun-Yi

机构信息

School of Civil Engineering, Chongqing University, Chongqing 400045, China.

Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China.

出版信息

Materials (Basel). 2023 Jul 25;16(15):5221. doi: 10.3390/ma16155221.

Abstract

A bimodular material is a kind of material that presents two elastic moduli in tension and compression. In classical thermoelasticity, however, the bimodular material is rarely considered due to its complexity in analysis. In fact, almost all materials will present, more or less, bimodular characteristics, and in some cases, the mechanical properties of materials cannot be fully utilized simply by ignoring the bimodular characteristics. In this study, the thermal stress problem of bimodular curved beams under the action of end-side concentrated shear force is analytically and numerically investigated, in which the temperature rise modes in a thermal environment are considered arbitrary. Using the stress function method based on compatibility conditions, a two-dimensional solution of thermoelasticity of the bimodular curved beam subjected to end-side concentrated shear force was obtained. The results show that the solution for a bimodular curved beam with a thermal effect can be reduced to that of a bimodular curved beam without a thermal effect. At the same time, the numerical simulation for the problem verifies the correctness of the theoretical solution. The results may serve as a theoretical reference for the refined analysis and optimization of curved beams in a thermal environment.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6608/10420245/cf7a1736b367/materials-16-05221-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验