Suppr超能文献

利用数值模拟和传感器预测冷藏生牛肉的氧化降解——肉类和鱼类食品的前景

Predicting the Oxidative Degradation of Raw Beef Meat during Cold Storage Using Numerical Simulations and Sensors-Prospects for Meat and Fish Foods.

作者信息

Kondjoyan Alain, Sicard Jason, Cucci Paolo, Audonnet Fabrice, Elhayel Hiba, Lebert André, Scislowski Valérie

机构信息

Qualité des Produits Animaux, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, 63122 St.-Genès-Champanelle, France.

Institut Pascal, Université Clermont Auvergne, CNRS, 4 Av. Blaise Pascal, Campus Universitaire des Cézeaux, 63178 Aubière, France.

出版信息

Foods. 2022 Apr 14;11(8):1139. doi: 10.3390/foods11081139.

Abstract

Preventing animal-source food waste is an important pathway to reducing malnutrition and improving food system sustainability. Uncontrolled color variation due to oxidation is a source of waste as it prompts food rejection by consumers. Evaluation of oxidation-reduction potential (ORP) can help to predict and prevent oxidation and undesirable color changes. A new sensor and two modeling approaches-a phenomenological model and a reaction-diffusion model-were successfully used to predict the oxidative browning of beef ribeye steaks stored under different temperature and oxygen concentration conditions. Both models predicted similar storage durations for acceptable color, although deviating for higher and lower redness levels, which are of no interest for meat acceptance. Simulations under higher oxygen concentrations lead to a few days of delay in the redness change, as observed in practice, under modified atmosphere packaging. In meat juice, variation in ORP measured by the sensor correlated with the redness variation. However, in meat, sensors promote oxidation in the adjacent area, which is unacceptable for industrial use. This paper discusses the potential, limits, and prospects of the mathematical models and sensors, developed for beef. A strategy is proposed to couple these approaches and include the effect of microorganisms.

摘要

防止动物源食物浪费是减少营养不良和提高粮食系统可持续性的重要途径。由于氧化导致的颜色无控制变化是食物浪费的一个来源,因为它会促使消费者拒绝食用。评估氧化还原电位(ORP)有助于预测和防止氧化以及不良的颜色变化。一种新型传感器和两种建模方法——现象学模型和反应扩散模型——成功用于预测在不同温度和氧气浓度条件下储存的牛肉肋眼牛排的氧化褐变。尽管对于较高和较低的红色度水平预测存在偏差(这些对肉类接受度而言并无意义),但两个模型对可接受颜色的储存持续时间预测相似。在较高氧气浓度下的模拟导致红色度变化延迟几天,正如在气调包装的实际情况中所观察到的那样。在肉汁中,传感器测量的ORP变化与红色度变化相关。然而,在肉类中,传感器会促进相邻区域的氧化,这在工业应用中是不可接受的。本文讨论了为牛肉开发的数学模型和传感器的潜力、局限性和前景。提出了一种将这些方法结合起来并纳入微生物影响的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8a3/9025137/c2ce0b91a839/foods-11-01139-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验