Suppr超能文献

子宫平滑肌瘤和平滑肌肉瘤的术前鉴别:当前的可能性与未来方向

Preoperative Differentiation of Uterine Leiomyomas and Leiomyosarcomas: Current Possibilities and Future Directions.

作者信息

Żak Klaudia, Zaremba Bartłomiej, Rajtak Alicja, Kotarski Jan, Amant Frédéric, Bobiński Marcin

机构信息

I Chair and Department of Oncological Gynaecology and Gynaecology, Student Scientific Association, Medical University of Lublin, 20-059 Lublin, Poland.

I Chair and Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, 20-059 Lublin, Poland.

出版信息

Cancers (Basel). 2022 Apr 13;14(8):1966. doi: 10.3390/cancers14081966.

Abstract

The distinguishing of uterine leiomyosarcomas (ULMS) and uterine leiomyomas (ULM) before the operation and histopathological evaluation of tissue is one of the current challenges for clinicians and researchers. Recently, a few new and innovative methods have been developed. However, researchers are trying to create different scales analyzing available parameters and to combine them with imaging methods with the aim of ULMs and ULM preoperative differentiation ULMs and ULM. Moreover, it has been observed that the technology, meaning machine learning models and artificial intelligence (AI), is entering the world of medicine, including gynecology. Therefore, we can predict the diagnosis not only through symptoms, laboratory tests or imaging methods, but also, we can base it on AI. What is the best option to differentiate ULM and ULMS preoperatively? In our review, we focus on the possible methods to diagnose uterine lesions effectively, including clinical signs and symptoms, laboratory tests, imaging methods, molecular aspects, available scales, and AI. In addition, considering costs and availability, we list the most promising methods to be implemented and investigated on a larger scale.

摘要

在手术前以及对组织进行组织病理学评估之前区分子宫平滑肌肉瘤(ULMS)和子宫平滑肌瘤(ULM),是临床医生和研究人员当前面临的挑战之一。最近,已经开发出了一些新的创新方法。然而,研究人员正在尝试创建不同的量表来分析可用参数,并将它们与成像方法相结合,目的是对子宫平滑肌肉瘤和子宫平滑肌瘤进行术前鉴别。此外,人们已经注意到,机器学习模型和人工智能(AI)等技术正在进入医学领域,包括妇科。因此,我们不仅可以通过症状、实验室检查或成像方法来预测诊断,还可以基于人工智能进行诊断。术前区分子宫平滑肌瘤和子宫平滑肌肉瘤的最佳选择是什么?在我们的综述中,我们重点关注有效诊断子宫病变的可能方法,包括临床体征和症状、实验室检查、成像方法、分子层面、可用量表以及人工智能。此外,考虑到成本和可及性,我们列出了最有前景的方法,以便在更大规模上实施和研究。

相似文献

10
Current state of the art and emerging pharmacotherapy for uterine leiomyosarcomas.子宫平滑肌肉瘤的当前现状和新兴药物治疗。
Expert Opin Pharmacother. 2019 Apr;20(6):713-723. doi: 10.1080/14656566.2019.1571042. Epub 2019 Feb 6.

引用本文的文献

9
Not All Leiomyosarcomas Are the Same: How to Best Classify LMS.并非所有平滑肌肉瘤都相同:如何对平滑肌肉瘤进行最佳分类。
Curr Treat Options Oncol. 2023 Apr;24(4):327-337. doi: 10.1007/s11864-023-01067-2. Epub 2023 Mar 8.

本文引用的文献

3
Endometrial Biopsy: Indications and Technique.子宫内膜活检:适应证与技术。
Prim Care. 2021 Dec;48(4):555-567. doi: 10.1016/j.pop.2021.07.003. Epub 2021 Oct 7.
5
Endometrial Sampling for Preoperative Diagnosis of Uterine Leiomyosarcoma.子宫内膜取样术用于子宫平滑肌肉瘤的术前诊断。
J Minim Invasive Gynecol. 2022 Jan;29(1):119-127. doi: 10.1016/j.jmig.2021.07.004. Epub 2021 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验