Salinas-Martínez Alfredo, Aguilar-Molina Ana María, Pérez-Oregon Jennifer, Angulo-Brown Fernando, Muñoz-Diosdado Alejandro
Departamento de Física, ESFM, Instituto Politécnico Nacional, Mexico City 07738, Mexico.
Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, 157 84 Athens, Greece.
Entropy (Basel). 2022 Mar 22;24(4):435. doi: 10.3390/e24040435.
The self-organized critical (SOC) spring-block models are accessible and powerful computational tools for the study of seismic subduction. This work aims to highlight some important findings through an integrative approach of several actual seismic properties, reproduced by using the Olami, Feder, and Christensen (OFC) SOC model and some variations of it. A few interesting updates are also included. These results encompass some properties of the power laws present in the model, such as the Gutenberg-Richter (GR) law, the correlation between the parameters and of the linear frequency-magnitude relationship, the stepped plots for cumulative seismicity, and the distribution of the recurrence times of large earthquakes. The spring-block model has been related to other relevant properties of seismic phenomena, such as the fractal distribution of fault sizes, and can be combined with the work of Aki, who established an interesting relationship between the fractal dimension and the -value of the Gutenberg-Richter relationship. Also included is the work incorporating the idea of asperities, which allowed us to incorporate several inhomogeneous models in the spring-block automaton. Finally, the incorporation of a Ruff-Kanamori-type diagram for synthetic seismicity, which is in reasonable accordance with the original Ruff and Kanamori diagram for real seismicity, is discussed.
自组织临界(SOC)弹簧块模型是用于研究地震俯冲的便捷且强大的计算工具。这项工作旨在通过一种综合方法突出一些重要发现,该方法涉及利用奥拉米、费德和克里斯滕森(OFC)的SOC模型及其一些变体再现的几种实际地震特性。还包括一些有趣的更新内容。这些结果涵盖了模型中幂律的一些特性,例如古登堡 - 里希特(GR)定律、线性频率 - 震级关系中参数与的相关性、累积地震活动的阶梯图以及大地震复发时间的分布。弹簧块模型已与地震现象的其他相关特性相关联,如断层大小的分形分布,并且可以与阿基的工作相结合,阿基在分形维数与古登堡 - 里希特关系的值之间建立了有趣的关系。还包括纳入粗糙度概念的工作,这使我们能够在弹簧块自动机中纳入几个非均匀模型。最后,讨论了纳入与实际地震活动的原始拉夫和金森图合理相符的合成地震活动的拉夫 - 金森型图。