Suppr超能文献

基于偏好树的实时推荐系统

Preference-Tree-Based Real-Time Recommendation System.

作者信息

Kang Seongju, Chung Kwangsue

机构信息

Department of Electronics and Communications Engineering, Kwangwoon University, Seoul 01897, Korea.

出版信息

Entropy (Basel). 2022 Apr 2;24(4):503. doi: 10.3390/e24040503.

Abstract

In the current era of online information overload, recommendation systems are very useful for helping users locate content that may be of interest to them. A personalized recommendation system presents content based on information such as a user's browsing history and the videos watched. However, information filtering-based recommendation systems are vulnerable to data sparsity and cold-start problems. Additionally, existing recommendation systems suffer from the large overhead incurred in learning regression models used for preference prediction or in selecting groups of similar users. In this study, we propose a preference-tree-based real-time recommendation system that uses various tree models to predict user preferences with a fast runtime. The proposed system predicts preferences based on two balance constants and one similarity threshold to recommend content with a high accuracy while balancing generalized and personalized preferences. The results of comparative experiments and ablation studies confirm that the proposed system can accurately recommend content to users. Specifically, we confirmed that the accuracy and novelty of the recommended content were, respectively, improved by 12.1% and 27.2% compared to existing systems. Furthermore, we verified that the proposed system satisfies real-time requirements and mitigates both cold-start and overfitting problems.

摘要

在当前这个网络信息过载的时代,推荐系统对于帮助用户找到他们可能感兴趣的内容非常有用。个性化推荐系统会根据诸如用户浏览历史和观看的视频等信息来呈现内容。然而,基于信息过滤的推荐系统容易受到数据稀疏性和冷启动问题的影响。此外,现有的推荐系统在学习用于偏好预测的回归模型或选择相似用户组时会产生大量开销。在本研究中,我们提出了一种基于偏好树的实时推荐系统,该系统使用各种树模型以快速运行时来预测用户偏好。所提出的系统基于两个平衡常数和一个相似性阈值来预测偏好,以便在平衡广义偏好和个性化偏好的同时高精度地推荐内容。对比实验和消融研究的结果证实,所提出的系统能够准确地向用户推荐内容。具体而言,我们证实与现有系统相比,推荐内容的准确性和新颖性分别提高了12.1%和27.2%。此外,我们验证了所提出的系统满足实时要求,并减轻了冷启动和过拟合问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5014/9030273/6ee5e5f7aa8e/entropy-24-00503-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验