State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
Yunnan Key Laboratory of Stem Cell and Regenerative Medicine and Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China.
Cells. 2022 Apr 9;11(8):1274. doi: 10.3390/cells11081274.
The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein (RBD) has a higher binding affinity to the human receptor angiotensin-converting enzyme 2 (ACE2) than the SARS-CoV RBD (RBD). Here, we performed molecular dynamics (MD) simulations, binding free energy (BFE) calculations, and interface residue contact network (IRCN) analysis to explore the mechanistic origin of different ACE2-binding affinities of the two RBDs. The results demonstrate that, when compared to the RBD-ACE2 complex, RBD-ACE2 features enhanced dynamicsand inter-protein positional movements and increased conformational entropy and conformational diversity. Although the inter-protein electrostatic attractive interactions are the primary determinant for the high ACE2-binding affinities of both RBDs, the significantly enhanced electrostatic attractive interactions between ACE2 and RBD determine the higher ACE2-binding affinity of RBD than of RBD. Comprehensive comparative analyses of the residue BFE components and IRCNs between the two complexes reveal that it is the residue changes at the RBD interface that lead to the overall stronger inter-protein electrostatic attractive force in RBD-ACE2, which not only tightens the interface packing and suppresses the dynamics of RBD-ACE2, but also enhances the ACE2-binding affinity of RBD. Since the RBD residue changes involving gain/loss of the positively/negatively charged residues can greatly enhance the binding affinity, special attention should be paid to the SARS-CoV-2 variants carrying such mutations, particularly those near or at the binding interfaces with the potential to form hydrogen bonds and/or salt bridges with ACE2.
新冠病毒(SARS-CoV-2)刺突蛋白的受体结合域(RBD)与人类受体血管紧张素转换酶 2(ACE2)的结合亲和力高于 SARS-CoV 的 RBD。在此,我们通过分子动力学(MD)模拟、结合自由能(BFE)计算和界面残基接触网络(IRCN)分析,探究了两种 RBD 与 ACE2 结合亲和力不同的机制起源。结果表明,与 RBD-ACE2 复合物相比,RBD-ACE2 具有增强的动力学和蛋白间位置运动,增加了构象熵和构象多样性。尽管蛋白间静电吸引力是两种 RBD 具有高 ACE2 结合亲和力的主要决定因素,但 ACE2 和 RBD 之间显著增强的静电吸引力决定了 RBD 比 RBD 具有更高的 ACE2 结合亲和力。对两种复合物之间残基 BFE 组成和 IRCN 的综合比较分析表明,是 RBD 界面处的残基变化导致 RBD-ACE2 中整体更强的蛋白间静电吸引力,这不仅使界面包装更加紧密,抑制了 RBD-ACE2 的动力学,还增强了 RBD 的 ACE2 结合亲和力。由于 RBD 残基变化涉及正负电荷残基的获得/丧失,可极大地增强结合亲和力,因此应特别注意携带此类突变的 SARS-CoV-2 变体,尤其是那些在与 ACE2 形成氢键和/或盐桥的潜在结合界面附近或处于结合界面的变体。