Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France.
Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif sur Yvette, France.
Int J Mol Sci. 2022 Apr 11;23(8):4224. doi: 10.3390/ijms23084224.
DspA/E is a type three effector injected by the pathogenic bacterium inside plant cells. In non-host , DspA/E inhibits seed germination, root growth, de novo protein synthesis and triggers localized cell death. To better understand the mechanisms involved, we performed EMS mutagenesis on a transgenic line, 13-1-2, containing an inducible gene. We identified three suppressor mutants, two of which belonged to the same complementation group. Both were resistant to the toxic effects of DspA/E. Metabolome analysis showed that the 13-1-2 line was depleted in metabolites of the TCA cycle and accumulated metabolites associated with cell death and defense. TCA cycle and cell-death associated metabolite levels were respectively increased and reduced in both suppressor mutants compared to the 13-1-2 line. Whole genome sequencing indicated that both suppressor mutants displayed missense mutations in conserved residues of Glycolate oxidase 2 (GOX2), a photorespiratory enzyme that we confirmed to be localized in the peroxisome. Leaf GOX activity increased in leaves infected with in a DspA/E-dependent manner. Moreover, the KO mutant was more sensitive to infection and displayed reduced JA-signaling. Our results point to a role for glycolate oxidase in type II non-host resistance and to the importance of central metabolic functions in controlling growth/defense balance.
DspA/E 是一种由病原菌注射到植物细胞内的 III 型效应蛋白。在非寄主中,DspA/E 抑制种子萌发、根生长、从头蛋白质合成并引发局部细胞死亡。为了更好地理解所涉及的机制,我们对含有可诱导基因的转基因系 13-1-2 进行了 EMS 诱变。我们鉴定了三个抑制突变体,其中两个属于同一互补群。两者均对 DspA/E 的毒性作用具有抗性。代谢组学分析表明,13-1-2 系中 TCA 循环的代谢物耗竭,并积累与细胞死亡和防御相关的代谢物。与 13-1-2 系相比,两个抑制突变体中的 TCA 循环和与细胞死亡相关的代谢物水平分别升高和降低。全基因组测序表明,两个抑制突变体均在光呼吸酶乙醛酸氧化酶 2 (GOX2)的保守残基中显示出错义突变,我们证实该酶定位于过氧化物酶体中。以 DspA/E 依赖的方式感染时,叶片中的 GOX 活性增加。此外,GOX 缺失突变体对 的感染更为敏感,并且表现出降低的 JA 信号转导。我们的结果表明,乙醛酸氧化酶在 II 型非寄主抗性中起作用,并且中央代谢功能在控制生长/防御平衡方面很重要。