Suppr超能文献

模式识别受体是 NLR 介导的植物免疫所必需的。

Pattern-recognition receptors are required for NLR-mediated plant immunity.

机构信息

National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.

University of Chinese Academy of Sciences, Beijing, China.

出版信息

Nature. 2021 Apr;592(7852):105-109. doi: 10.1038/s41586-021-03316-6. Epub 2021 Mar 10.

Abstract

The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is triggered by microbial patterns via cell surface-localized pattern-recognition receptors (PRRs), whereas ETI is activated by pathogen effector proteins via predominantly intracellularly localized receptors called nucleotide-binding, leucine-rich repeat receptors (NLRs). PTI and ETI are initiated by distinct activation mechanisms and involve different early signalling cascades. Here we show that Arabidopsis PRR and PRR co-receptor mutants-fls2 efr cerk1 and bak1 bkk1 cerk1 triple mutants-are markedly impaired in ETI responses when challenged with incompatible Pseudomonas syrinage bacteria. We further show that the production of reactive oxygen species by the NADPH oxidase RBOHD is a critical early signalling event connecting PRR- and NLR-mediated immunity, and that the receptor-like cytoplasmic kinase BIK1 is necessary for full activation of RBOHD, gene expression and bacterial resistance during ETI. Moreover, NLR signalling rapidly augments the transcript and/or protein levels of key PTI components. Our study supports a revised model in which potentiation of PTI is an indispensable component of ETI during bacterial infection. This revised model conceptually unites two major immune signalling cascades in plants and mechanistically explains some of the long-observed similarities in downstream defence outputs between PTI and ETI.

摘要

植物免疫系统对于植物在自然生态系统中的生存和作物田间的生产力至关重要。大量证据支持这样一种普遍观点,即植物拥有双层先天免疫系统,分别称为模式触发免疫(PTI)和效应物触发免疫(ETI)。PTI 是由微生物模式通过细胞表面定位的模式识别受体(PRRs)触发的,而 ETI 是由病原体效应蛋白通过主要位于细胞内的受体(称为核苷酸结合富含亮氨酸重复受体(NLRs))激活的。PTI 和 ETI 是由不同的激活机制引发的,涉及不同的早期信号级联反应。在这里,我们表明拟南芥 PRR 和 PRR 共受体突变体-fls2 efr cerk1 和 bak1 bkk1 cerk1 三重突变体在受到不相容的丁香假单胞菌的挑战时,在 ETI 反应中明显受损。我们进一步表明,NADPH 氧化酶 RBOHD 产生的活性氧是连接 PRR 和 NLR 介导的免疫的关键早期信号事件,并且受体样细胞质激酶 BIK1 是 RBOHD、基因表达和细菌抗性在 ETI 期间完全激活所必需的。此外,NLR 信号迅速增强了关键 PTI 成分的转录物和/或蛋白质水平。我们的研究支持了一个修订后的模型,即在细菌感染过程中,增强 PTI 是 ETI 的一个不可或缺的组成部分。该修订模型概念上统一了植物中的两个主要免疫信号级联,并从机制上解释了 PTI 和 ETI 之间下游防御产物长期观察到的一些相似性。

相似文献

6
Activation of TIR signalling boosts pattern-triggered immunity.TIR 信号的激活增强了模式触发的免疫。
Nature. 2021 Oct;598(7881):500-503. doi: 10.1038/s41586-021-03987-1. Epub 2021 Sep 20.

引用本文的文献

6
Biomolecular condensates in plant immunity.植物免疫中的生物分子凝聚物
Cell Host Microbe. 2025 Aug 13;33(8):1276-1290. doi: 10.1016/j.chom.2025.06.014.

本文引用的文献

3
Pseudomonas syringae: what it takes to be a pathogen.丁香假单胞菌:成为病原体需要什么。
Nat Rev Microbiol. 2018 May;16(5):316-328. doi: 10.1038/nrmicro.2018.17. Epub 2018 Feb 26.
6
Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network.茉莉酸基因调控网络的结构与动态。
Plant Cell. 2017 Sep;29(9):2086-2105. doi: 10.1105/tpc.16.00958. Epub 2017 Aug 21.
7
From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition.从混乱到和谐:微生物模式识别后的反应与信号传导
Annu Rev Phytopathol. 2017 Aug 4;55:109-137. doi: 10.1146/annurev-phyto-080516-035649. Epub 2017 May 19.
8
Apoplastic ROS signaling in plant immunity.植物免疫中的质外体活性氧信号传导
Curr Opin Plant Biol. 2017 Aug;38:92-100. doi: 10.1016/j.pbi.2017.04.022. Epub 2017 May 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验