Miccio Luis A, Borredon Claudia, Casado Ulises, Phan Anh D, Schwartz Gustavo A
Centro de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center (MPC), P. M. de Lardizabal 5, 20018 San Sebastian, Spain.
Donostia International Physics Center, P. M. de Lardizábal 4, 20018 San Sebastian, Spain.
Polymers (Basel). 2022 Apr 12;14(8):1573. doi: 10.3390/polym14081573.
The analysis of structural relaxation dynamics of polymers gives an insight into their mechanical properties, whose characterization is used to qualify a given material for its practical scope. The dynamics are usually expressed in terms of the temperature dependence of the relaxation time, which is only available through time-consuming experimental processes following polymer synthesis. However, it would be advantageous to estimate their dynamics before synthesizing them when designing new materials. In this work, we propose a combined approach of artificial neural networks and the elastically collective nonlinear Langevin equation (ECNLE) to estimate the temperature dependence of the main structural relaxation time of polymers based only on the knowledge of the chemical structure of the corresponding monomer.
聚合物结构弛豫动力学的分析有助于深入了解其力学性能,对力学性能的表征可用于确定给定材料在实际应用中的适用性。动力学通常用弛豫时间的温度依赖性来表示,而这只能通过聚合物合成后耗时的实验过程来获得。然而,在设计新材料时,若能在合成前估算其动力学,将具有很大优势。在这项工作中,我们提出了一种人工神经网络与弹性集体非线性朗之万方程(ECNLE)相结合的方法,仅基于相应单体化学结构的知识来估算聚合物主要结构弛豫时间的温度依赖性。