Phan Anh D, Wakabayashi Katsunori, Paluch Marian, Lam Vu D
Faculty of Materials Science and Engineering, Phenikaa Institute for Advanced Study, Phenikaa University Hanoi 12116 Vietnam
Faculty of Information Technology, Artificial Intelligence Laboratory, Phenikaa University Hanoi 12116 Vietnam.
RSC Adv. 2019 Dec 4;9(69):40214-40221. doi: 10.1039/c9ra08441j. eCollection 2019 Dec 3.
Theoretical approaches are formulated to investigate the molecular mobility under various cooling rates of amorphous drugs. We describe the structural relaxation of a tagged molecule as a coupled process of cage-scale dynamics and collective molecular rearrangement beyond the first coordination shell. The coupling between local and non-local dynamics behaves distinctly in different substances. Theoretical calculations for the structural relaxation time, glass transition temperature, and dynamic fragility are carried out over twenty-two amorphous drugs and polymers. Numerical results have a quantitatively good accordance with experimental data and the extracted physical quantities using the Vogel-Fulcher-Tammann fit function and machine learning. The machine learning method reveals the linear relation between the glass transition temperature and the melting point, which is a key factor for pharmaceutical solubility. Our predictive approaches are reliable tools for developing drug formulations.
制定了理论方法来研究无定形药物在不同冷却速率下的分子流动性。我们将标记分子的结构弛豫描述为笼尺度动力学和第一配位层之外的集体分子重排的耦合过程。局部和非局部动力学之间的耦合在不同物质中表现出明显差异。对22种无定形药物和聚合物进行了结构弛豫时间、玻璃化转变温度和动态脆性的理论计算。数值结果与实验数据以及使用Vogel-Fulcher-Tammann拟合函数和机器学习提取的物理量在定量上具有良好的一致性。机器学习方法揭示了玻璃化转变温度与熔点之间的线性关系,这是药物溶解度的关键因素。我们的预测方法是开发药物制剂的可靠工具。