National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang 12120, Thailand.
Interdisziplinäres Forschungszentrum IFZ, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
Molecules. 2022 Apr 11;27(8):2463. doi: 10.3390/molecules27082463.
The treatment of a variety of protozoal infections, in particular those causing disabling human diseases, is still hampered by a lack of drugs or increasing resistance to registered drugs. However, in recent years, remarkable progress has been achieved to combat neglected tropical diseases by sequencing the parasites’ genomes or the validation of new targets in the parasites by novel genetic manipulation techniques, leading to loss of function. The novel amino acid hypusine is a posttranslational modification (PTM) that occurs in eukaryotic initiation factor 5A (EIF5A) at a specific lysine residue. This modification occurs by two steps catalyzed by deoxyhypusine synthase (dhs) and deoxyhypusine hydroxylase (DOHH) enzymes. dhs from Plasmodium has been validated as a druggable target by small molecules and reverse genetics. Recently, the synthesis of a series of human dhs inhibitors led to 6-bromo-N-(1H-indol-4yl)-1-benzothiophene-2-carboxamide, a potent allosteric inhibitor with an IC50 value of 0.062 µM. We investigated this allosteric dhs inhibitor in Plasmodium. In vitro P. falciparum growth assays showed weak inhibition activity, with IC50 values of 46.1 µM for the Dd2 strain and 51.5 µM for the 3D7 strain, respectively. The antimalarial activity could not be attributed to the targeting of the Pfdhs gene, as shown by chemogenomic profiling with transgenically modified P. falciparum lines. Moreover, in dose-dependent enzymatic assays with purified recombinant P. falciparum dhs protein, only 45% inhibition was observed at an inhibitor dose of 0.4 µM. These data are in agreement with a homology-modeled Pfdhs, suggesting significant structural differences in the allosteric site between the human and parasite enzymes. Virtual screening of the allosteric database identified candidate ligand binding to novel binding pockets identified in P. falciparum dhs, which might foster the development of parasite-specific inhibitors.
治疗各种原生动物感染,特别是那些导致人类致残的疾病,仍然受到缺乏药物或对已注册药物的耐药性增加的阻碍。然而,近年来,通过对寄生虫基因组进行测序,或通过新的遗传操作技术验证寄生虫中的新靶标,从而导致功能丧失,在防治被忽视的热带病方面取得了显著进展。新型氨基酸hypusine 是真核起始因子 5A (EIF5A) 在特定赖氨酸残基上发生的翻译后修饰 (PTM)。该修饰由脱氧hypusine 合酶 (dhs) 和脱氧hypusine 羟化酶 (DOHH) 酶催化的两步完成。已通过小分子和反向遗传学验证了疟原虫中的 dhs 是可成药的靶标。最近,一系列人 dhs 抑制剂的合成导致了 6-溴-N-(1H-吲哚-4 基)-1-苯并噻吩-2-甲酰胺的合成,这是一种具有 0.062 µM 的 IC50 值的有效的别构抑制剂。我们在疟原虫中研究了这种别构 dhs 抑制剂。体外疟原虫生长试验显示抑制活性较弱,Dd2 株的 IC50 值为 46.1 µM,3D7 株的 IC50 值为 51.5 µM。化学基因组学分析表明,抗疟活性不能归因于 Pfdhs 基因的靶向,用转基因组修饰的疟原虫系进行了化学基因组学分析。此外,在用纯化的重组疟原虫 dhs 蛋白进行的剂量依赖性酶试验中,在抑制剂剂量为 0.4 µM 时仅观察到 45%的抑制。这些数据与同源建模的 Pfdhs 一致,表明人源和寄生虫酶的别构位点存在显著的结构差异。对别构数据库的虚拟筛选鉴定出了与疟原虫 dhs 中鉴定的新型结合口袋结合的候选配体,这可能促进寄生虫特异性抑制剂的开发。