Suppr超能文献

基于航空图像的绝缘子缺陷检测的改进 CenterNet 模型。

An Improved CenterNet Model for Insulator Defect Detection Using Aerial Imagery.

机构信息

School of Information and Computer, Anhui Agricultural University, Hefei 230036, China.

Anhui Provincial Key Laboratory of Power Electronics and Motion Control, Ma'anshan 243032, China.

出版信息

Sensors (Basel). 2022 Apr 8;22(8):2850. doi: 10.3390/s22082850.

Abstract

For the issue of low accuracy and poor real-time performance of insulator and defect detection by an unmanned aerial vehicle (UAV) in the process of power inspection, an insulator detection model MobileNet_CenterNet was proposed in this study. First, the lightweight network MobileNet V1 was used to replace the feature extraction network Resnet-50 of the original model, aiming to ensure the detection accuracy of the model while speeding up its detection speed. Second, a spatial and channel attention mechanism convolutional block attention module (CBAM) was introduced in CenterNet, aiming to improve the prediction accuracy of small target insulator position information. Then, three transposed convolution modules were added for upsampling, aiming to better restore the semantic information and position information of the image. Finally, the insulator dataset (ID) constructed by ourselves and the public dataset (CPLID) were used for model training and validation, aiming to improve the generalization ability of the model. The experimental results showed that compared with the CenterNet model, MobileNet_CenterNet improved the detection accuracy by 12.2%, the inference speed by 1.1 f/s for FPS-CPU and 4.9 f/s for FPS-GPU, and the model size was reduced by 37 MB. Compared with other models, our proposed model improved both detection accuracy and inference speed, indicating that the MobileNet_CenterNet model had better real-time performance and robustness.

摘要

针对无人机(UAV)在电力巡检过程中绝缘子和缺陷检测精度低、实时性差的问题,提出了一种绝缘子检测模型 MobileNet_CenterNet。首先,使用轻量化网络 MobileNet V1 替换原始模型的特征提取网络 Resnet-50,旨在保证模型检测精度的同时提高其检测速度。其次,在 CenterNet 中引入了空间和通道注意力机制卷积块注意力模块(CBAM),旨在提高小目标绝缘子位置信息的预测精度。然后,添加了三个转置卷积模块进行上采样,旨在更好地恢复图像的语义信息和位置信息。最后,使用我们自己构建的绝缘子数据集(ID)和公共数据集(CPLID)进行模型训练和验证,旨在提高模型的泛化能力。实验结果表明,与 CenterNet 模型相比,MobileNet_CenterNet 提高了 12.2%的检测精度,使 FPS-CPU 的推理速度提高了 1.1 f/s,FPS-GPU 的推理速度提高了 4.9 f/s,模型大小减小了 37 MB。与其他模型相比,我们提出的模型提高了检测精度和推理速度,表明 MobileNet_CenterNet 模型具有更好的实时性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e730/9031845/485ea9c6dc54/sensors-22-02850-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验