Cui Hanzhi, Huang Dawei, Feng Wancheng, Li Zhengao, Ouyang Qiuxue, Zhong Conghan
College of Computer Engineering, Qingdao City University, Qingdao, China.
School of Intelligent Equipment, Shandong University of Science and Technology, Tai'an, China.
PLoS One. 2025 May 30;20(5):e0324524. doi: 10.1371/journal.pone.0324524. eCollection 2025.
Ensuring transmission line safety is crucial. Detecting insulator defects is a key task. UAV-based insulator detection faces challenges: complex backgrounds, scale variations, and high computational costs. To address these, we propose FIAEPI-KD, a knowledge distillation framework integrating Feature Indicator Attention (FIA) and Edge Preservation Index (EPI). The method employs ResNet and FPN for multi-scale feature extraction. The FIA module dynamically focuses on multi-scale insulator edges via dual-path attention mechanisms, suppressing background interference. The EPI module quantifies edge differences between teacher and student models through gradient-aware distillation. The training objective combines Euclidean distance, KL divergence, and FIA-EPI losses to align feature-space similarities and edge details, enabling multi-level knowledge distillation. Experiments demonstrate significant improvements on our custom dataset containing farmland and waterbody scenarios. The RetinaNet-ResNet18 student model achieves a 10.5% mAP improvement, rising from 42.7% to 53.2%. Meanwhile, the Faster R-CNN-ResNet18 model achieves a 7.4% mAP improvement, rising from 42.7% to 50.1%. Additionally, the RepPoints-ResNet18 model achieves a 7.7% mAP improvement, rising from 49.6% to 57.3%. These results validate the effectiveness of FIAEPI-KD in enhancing detection accuracy across diverse detector architectures and backbone networks. On the MSCOCO dataset, FIAEPI-KD outperformed mainstream distillation methods like FKD and PKD. Ablation studies confirmed FIA's role in feature focus and EPI's edge difference quantification. Using FIA alone increased RetinaNet-ResNet50's mAP by 0.9%. Combined FIA+EPI achieved a total 3.0% improvement, the method utilizes a lightweight student model for efficient deployment, providing an effective solution for detecting insulation defects in transmission lines.
确保输电线路安全至关重要。检测绝缘子缺陷是一项关键任务。基于无人机的绝缘子检测面临挑战:背景复杂、尺度变化和计算成本高。为解决这些问题,我们提出了FIAEPI-KD,这是一个集成了特征指标注意力(FIA)和边缘保留指数(EPI)的知识蒸馏框架。该方法采用ResNet和FPN进行多尺度特征提取。FIA模块通过双路径注意力机制动态聚焦于多尺度绝缘子边缘,抑制背景干扰。EPI模块通过梯度感知蒸馏量化教师模型和学生模型之间的边缘差异。训练目标结合了欧几里得距离、KL散度和FIA-EPI损失,以对齐特征空间相似度和边缘细节,实现多层次知识蒸馏。实验表明,在我们包含农田和水体场景的自定义数据集上有显著改进。RetinaNet-ResNet18学生模型的平均精度均值(mAP)提高了10.5%,从42.7%升至53.2%。同时,Faster R-CNN-ResNet18模型的mAP提高了7.4%,从42.7%升至50.1%。此外,RepPoints-ResNet18模型的mAP提高了7.7%,从49.6%升至57.3%。这些结果验证了FIAEPI-KD在提高不同检测器架构和骨干网络的检测精度方面的有效性。在MSCOCO数据集上,FIAEPI-KD优于FKD和PKD等主流蒸馏方法。消融研究证实了FIA在特征聚焦方面的作用以及EPI在边缘差异量化方面的作用。仅使用FIA可使RetinaNet-ResNet50的mAP提高0.9%。FIA+EPI组合总共实现了3.0%的提升,该方法使用轻量级学生模型进行高效部署,为检测输电线路中的绝缘缺陷提供了有效解决方案。