Suppr超能文献

基于多阶段特征推理生成对抗网络的语义图像修复。

Semantic Image Inpainting with Multi-Stage Feature Reasoning Generative Adversarial Network.

机构信息

School of Computer Science, Shaanxi Normal University, Xi'an 710062, China.

出版信息

Sensors (Basel). 2022 Apr 8;22(8):2854. doi: 10.3390/s22082854.

Abstract

Most existing image inpainting methods have achieved remarkable progress in small image defects. However, repairing large missing regions with insufficient context information is still an intractable problem. In this paper, a Multi-stage Feature Reasoning Generative Adversarial Network to gradually restore irregular holes is proposed. Specifically, dynamic partial convolution is used to adaptively adjust the restoration proportion during inpainting progress, which strengthens the correlation between valid and invalid pixels. In the decoding phase, the statistical natures of features in the masked areas differentiate from those of unmasked areas. To this end, a novel decoder is designed which not only dynamically assigns a scaling factor and bias on per feature point basis using point-wise normalization, but also utilizes skip connections to solve the problem of information loss between the codec network layers. Moreover, in order to eliminate gradient vanishing and increase the reasoning times, a hybrid weighted merging method consisting of a hard weight map and a soft weight map is proposed to ensemble the feature maps generated during the whole reconstruction process. Experiments on CelebA, Places2, and Paris StreetView show that the proposed model generates results with a PSNR improvement of 0.3 dB to 1.2 dB compared to other methods.

摘要

大多数现有的图像修复方法在小图像缺陷方面已经取得了显著的进展。然而,对于具有不足上下文信息的大缺失区域的修复仍然是一个棘手的问题。本文提出了一种多阶段特征推理生成对抗网络,用于逐步恢复不规则的空洞。具体来说,动态部分卷积用于在修复过程中自适应地调整修复比例,从而增强有效像素和无效像素之间的相关性。在解码阶段,掩蔽区域中特征的统计性质与未掩蔽区域的特征的统计性质不同。为此,设计了一种新颖的解码器,不仅使用逐点归一化在每个特征点的基础上动态分配比例因子和偏差,而且还利用跳过连接来解决编解码器网络层之间的信息丢失问题。此外,为了消除梯度消失并增加推理次数,提出了一种混合加权融合方法,该方法由硬权重图和软权重图组成,用于融合整个重建过程中生成的特征图。在 CelebA、Places2 和 Paris StreetView 上的实验表明,与其他方法相比,所提出的模型生成的结果在 PSNR 上提高了 0.3 dB 到 1.2 dB。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d17f/9028575/22411c3c33f1/sensors-22-02854-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验