Suppr超能文献

基于非局部纹理匹配和非线性滤波的图像修复。

Image Inpainting Using Nonlocal Texture Matching and Nonlinear Filtering.

出版信息

IEEE Trans Image Process. 2019 Apr;28(4):1705-1719. doi: 10.1109/TIP.2018.2880681. Epub 2018 Nov 12.

Abstract

Nonlocal texture similarity and local intensity smoothness are both essential for solving most image inpainting problems. In this paper, we propose a novel image inpainting algorithm that is capable of reproducing the underlying textural details using a nonlocal texture measure and also smoothing pixel intensity seamlessly in order to achieve natural-looking inpainted images. For matching texture, we propose a Gaussian-weighted nonlocal texture similarity measure to obtain multiple candidate patches for each target patch. To compute the pixel intensity, we apply the -trimmed mean filter to the candidate patches to inpaint the target patch pixel-by-pixel. The proposed algorithm is compared with four current image inpainting algorithms under different scenarios, including object removal, texture synthesis, and error concealment. Experimental results show that the proposed algorithm outperforms the existing algorithms when inpainting large missing regions in images with texture and geometric structures.

摘要

非局部纹理相似性和局部强度平滑性对于解决大多数图像修复问题都是至关重要的。在本文中,我们提出了一种新的图像修复算法,该算法能够使用非局部纹理测度来复制底层纹理细节,并且能够无缝平滑像素强度,从而实现自然的修复图像。对于匹配纹理,我们提出了一种高斯加权的非局部纹理相似性度量方法,以获取每个目标补丁的多个候选补丁。为了计算像素强度,我们对候选补丁应用 -修剪均值滤波器,以逐像素地修复目标补丁。在不同的场景下,包括物体移除、纹理合成和错误隐藏,我们将所提出的算法与四种现有的图像修复算法进行了比较。实验结果表明,在修复具有纹理和几何结构的图像中大的缺失区域时,所提出的算法优于现有的算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验