Suppr超能文献

基于带有移动窗口和目标估计器的稀疏光流的运动目标跟踪

Moving Object Tracking Based on Sparse Optical Flow with Moving Window and Target Estimator.

作者信息

Choi Hosik, Kang Byungmun, Kim DaeEun

机构信息

School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Korea.

出版信息

Sensors (Basel). 2022 Apr 8;22(8):2878. doi: 10.3390/s22082878.

Abstract

Moving object detection and tracking are technologies applied to wide research fields including traffic monitoring and recognition of workers in surrounding heavy equipment environments. However, the conventional moving object detection methods have faced many problems such as much computing time, image noises, and disappearance of targets due to obstacles. In this paper, we introduce a new moving object detection and tracking algorithm based on the sparse optical flow for reducing computing time, removing noises and estimating the target efficiently. The developed algorithm maintains a variety of corner features with refreshed corner features, and the moving window detector is proposed to determine the feature points for tracking, based on the location history of the points. The performance of detecting moving objects is greatly improved through the moving window detector and the continuous target estimation. The memory-based estimator provides the capability to recall the location of corner features for a period of time, and it has an effect of tracking targets obscured by obstacles. The suggested approach was applied to real environments including various illumination (indoor and outdoor) conditions, a number of moving objects and obstacles, and the performance was evaluated on an embedded board (Raspberry pi4). The experimental results show that the proposed method maintains a high FPS (frame per seconds) and improves the accuracy performance, compared with the conventional optical flow methods and vision approaches such as Haar-like and Hog methods.

摘要

运动目标检测与跟踪是应用于广泛研究领域的技术,包括交通监控以及在周围重型设备环境中识别工人。然而,传统的运动目标检测方法面临诸多问题,如计算时间长、图像噪声以及由于障碍物导致目标消失等。在本文中,我们介绍一种基于稀疏光流的新型运动目标检测与跟踪算法,以减少计算时间、去除噪声并有效地估计目标。所开发的算法通过更新角点特征来维持各种角点特征,并基于点的位置历史提出移动窗口检测器来确定用于跟踪的特征点。通过移动窗口检测器和连续目标估计,运动目标检测的性能得到了极大提高。基于内存的估计器提供了在一段时间内召回角点特征位置的能力,并且具有跟踪被障碍物遮挡目标的效果。所提出的方法应用于包括各种光照(室内和室外)条件、多个运动目标和障碍物的真实环境中,并在嵌入式板(Raspberry pi4)上评估了其性能。实验结果表明,与传统光流方法以及诸如Haar-like和Hog方法等视觉方法相比,所提出的方法保持了较高的每秒帧数(FPS)并提高了精度性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d373/9030475/fca1bb5a9c59/sensors-22-02878-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验