Suppr超能文献

咳嗽声音采集、自动检测和自动分类的过去和趋势:比较综述。

Past and Trends in Cough Sound Acquisition, Automatic Detection and Automatic Classification: A Comparative Review.

机构信息

Institute of Medical Informatics, University Hospital of the RWTH Aachen, 52057 Aachen, Germany.

Clinic for Phoniatrics, Pedaudiology & Communication Disorders, University Hospital of the RWTH Aachen, 52057 Aachen, Germany.

出版信息

Sensors (Basel). 2022 Apr 10;22(8):2896. doi: 10.3390/s22082896.

Abstract

Cough is a very common symptom and the most frequent reason for seeking medical advice. Optimized care goes inevitably through an adapted recording of this symptom and automatic processing. This study provides an updated exhaustive quantitative review of the field of cough sound acquisition, automatic detection in longer audio sequences and automatic classification of the nature or disease. Related studies were analyzed and metrics extracted and processed to create a quantitative characterization of the state-of-the-art and trends. A list of objective criteria was established to select a subset of the most complete detection studies in the perspective of deployment in clinical practice. One hundred and forty-four studies were short-listed, and a picture of the state-of-the-art technology is drawn. The trend shows an increasing number of classification studies, an increase of the dataset size, in part from crowdsourcing, a rapid increase of COVID-19 studies, the prevalence of smartphones and wearable sensors for the acquisition, and a rapid expansion of deep learning. Finally, a subset of 12 detection studies is identified as the most complete ones. An unequaled quantitative overview is presented. The field shows a remarkable dynamic, boosted by the research on COVID-19 diagnosis, and a perfect adaptation to mobile health.

摘要

咳嗽是一种非常常见的症状,也是寻求医疗咨询的最常见原因。优化的护理不可避免地需要对该症状进行适应性记录和自动处理。本研究对咳嗽声音采集、较长音频序列中的自动检测以及自然或疾病的自动分类领域进行了全面的定量综述。对相关研究进行了分析,提取并处理了指标,以对最新技术和趋势进行定量描述。建立了一份客观标准清单,以便从部署在临床实践的角度选择最完整的检测研究子集。有 144 项研究入围,描绘了当前技术的概况。趋势表明分类研究的数量不断增加,数据集的规模也在增加,部分来自众包,COVID-19 研究的迅速增加,智能手机和可穿戴传感器的普及用于采集,以及深度学习的迅速扩展。最后,确定了 12 个检测研究作为最完整的研究子集。提出了一个无与伦比的定量综述。该领域显示出非凡的活力,这得益于 COVID-19 诊断方面的研究,以及对移动健康的完美适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ca0/9027375/2f5c5db0b267/sensors-22-02896-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验