Suppr超能文献

基于梅尔频谱图和卷积神经网络的咳嗽识别

Cough Recognition Based on Mel-Spectrogram and Convolutional Neural Network.

作者信息

Zhou Quan, Shan Jianhua, Ding Wenlong, Wang Chengyin, Yuan Shi, Sun Fuchun, Li Haiyuan, Fang Bin

机构信息

Anhui Province Key Laboratory of Special Heavy Load Robot, Anhui University of Technology, Ma'anshan, China.

Beijing National Research Center for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing, China.

出版信息

Front Robot AI. 2021 May 7;8:580080. doi: 10.3389/frobt.2021.580080. eCollection 2021.

Abstract

In daily life, there are a variety of complex sound sources. It is important to effectively detect certain sounds in some situations. With the outbreak of COVID-19, it is necessary to distinguish the sound of coughing, to estimate suspected patients in the population. In this paper, we propose a method for cough recognition based on a Mel-spectrogram and a Convolutional Neural Network called the Cough Recognition Network (CRN), which can effectively distinguish cough sounds.

摘要

在日常生活中,存在各种各样的复杂声源。在某些情况下有效检测特定声音很重要。随着新冠疫情的爆发,有必要区分咳嗽声,以在人群中估算疑似患者。在本文中,我们提出了一种基于梅尔频谱图和卷积神经网络的咳嗽识别方法,称为咳嗽识别网络(CRN),它可以有效区分咳嗽声。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d31c/8138471/f25d973f8c80/frobt-08-580080-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验