Suppr超能文献

基于机器学习和物联网的智能城市自适应交通管理系统的设计与实现。

Design and Implementation of an ML and IoT Based Adaptive Traffic-Management System for Smart Cities.

机构信息

KIET Group of Institutions, NCR, Ghaziabad 201206, UP, India.

Department of Electrical and Electronics Engineering, Faculty of Engineering, University of Lagos, Akoka, Lagos 100213, Nigeria.

出版信息

Sensors (Basel). 2022 Apr 10;22(8):2908. doi: 10.3390/s22082908.

Abstract

The rapid growth in the number of vehicles has led to traffic congestion, pollution, and delays in logistic transportation in metropolitan areas. IoT has been an emerging innovation, moving the universe towards automated processes and intelligent management systems. This is a critical contribution to automation and smart civilizations. Effective and reliable congestion management and traffic control help save many precious resources. An IoT-based ITM system set of sensors is embedded in automatic vehicles and intelligent devices to recognize, obtain, and transmit data. Machine learning (ML) is another technique to improve the transport system. The existing transport-management solutions encounter several challenges resulting in traffic congestion, delay, and a high fatality rate. This research work presents the design and implementation of an Adaptive Traffic-management system (ATM) based on ML and IoT. The design of the proposed system is based on three essential entities: vehicle, infrastructure, and events. The design utilizes various scenarios to cover all the possible issues of the transport system. The proposed ATM system also utilizes the machine-learning-based DBSCAN clustering method to detect any accidental anomaly. The proposed ATM model constantly updates traffic signal schedules depending on traffic volume and estimated movements from nearby crossings. It significantly lowers traveling time by gradually moving automobiles across green signals and decreases traffic congestion by generating a better transition. The experiment outcomes reveal that the proposed ATM system significantly outperformed the conventional traffic-management strategy and will be a frontrunner for transportation planning in smart-city-based transport systems. The proposed ATM solution minimizes vehicle waiting times and congestion, reduces road accidents, and improves the overall journey experience.

摘要

车辆数量的快速增长导致了大都市地区的交通拥堵、污染和物流运输延误。物联网是一种新兴的创新技术,推动着宇宙向自动化流程和智能管理系统发展。这是对自动化和智慧城市的重要贡献。有效的、可靠的拥塞管理和交通控制有助于节省许多宝贵的资源。基于物联网的 ITM 系统传感器套件嵌入在自动驾驶车辆和智能设备中,用于识别、获取和传输数据。机器学习(ML)是另一种改进交通系统的技术。现有的交通管理解决方案遇到了一些挑战,导致交通拥堵、延误和高死亡率。本研究工作提出了一种基于机器学习和物联网的自适应交通管理系统(ATM)的设计和实现。该系统的设计基于三个基本实体:车辆、基础设施和事件。该设计利用各种场景来涵盖交通系统的所有可能问题。所提出的 ATM 系统还利用基于机器学习的 DBSCAN 聚类方法来检测任何意外异常。所提出的 ATM 系统根据交通量和附近交叉口的估计移动情况不断更新交通信号时间表。它通过逐渐将汽车转移到绿色信号上,显著降低了行驶时间,并通过生成更好的过渡来减少交通拥堵。实验结果表明,所提出的 ATM 系统明显优于传统的交通管理策略,将成为智慧城市交通系统中交通规划的引领者。所提出的 ATM 解决方案可最大限度地减少车辆等待时间和拥堵,减少道路事故,并提高整体出行体验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d1/9024789/5c0666c14d25/sensors-22-02908-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验