Suppr超能文献

分布式多接入边缘计算智慧城市的动态自适应攻击检测模型

Dynamic Adaptation Attack Detection Model for a Distributed Multi-Access Edge Computing Smart City.

作者信息

Alotaibi Nouf Saeed, Ahmed Hassan Ibrahim, Kamel Samah Osama M

机构信息

Computer Science Department, Shaqra University, Dawadmi City 11911, Saudi Arabia.

Informatics Department, Electronic Research Institute, Cairo 12622, Egypt.

出版信息

Sensors (Basel). 2023 Aug 12;23(16):7135. doi: 10.3390/s23167135.

Abstract

The internet of things (IoT) technology presents an intelligent way to improve our lives and contributes to many fields such as industry, communications, agriculture, etc. Unfortunately, IoT networks are exposed to many attacks that may destroy the entire network and consume network resources. This paper aims to propose intelligent process automation and an auto-configured intelligent automation detection model (IADM) to detect and prevent malicious network traffic and behaviors/events at distributed multi-access edge computing in an IoT-based smart city. The proposed model consists of two phases. The first phase relies on the intelligent process automation (IPA) technique and contains five modules named, specifically, dataset collection and pre-processing module, intelligent automation detection module, analysis module, detection rules and action module, and database module. In the first phase, each module composes an intelligent connecting module to give feedback reports about each module and send information to the next modules. Therefore, any change in each process can be easily detected and labeled as an intrusion. The intelligent connection module (ICM) may reduce the search time, increase the speed, and increase the security level. The second phase is the dynamic adaptation of the attack detection model based on reinforcement one-shot learning. The first phase is based on a multi-classification technique using Random Forest Trees (RFT), k-Nearest Neighbor (K-NN), J48, AdaBoost, and Bagging. The second phase can learn the new changed behaviors based on reinforced learning to detect zero-day attacks and malicious events in IoT-based smart cities. The experiments are implemented using a UNSW-NB 15 dataset. The proposed model achieves high accuracy rates using RFT, K-NN, and AdaBoost of approximately 98.8%. It is noted that the accuracy rate of the J48 classifier achieves 85.51%, which is lower than the others. Subsequently, the accuracy rates of AdaBoost and Bagging based on J48 are 98.9% and 91.41%, respectively. Additionally, the error rates of RFT, K-NN, and AdaBoost are very low. Similarly, the proposed model achieves high precision, recall, and F1-measure high rates using RFT, K-NN, AdaBoost, and Bagging. The second phase depends on creating an auto-adaptive model through the dynamic adaptation of the attack detection model based on reinforcement one-shot learning using a small number of instances to conserve the memory of any smart device in an IoT network. The proposed auto-adaptive model may reduce false rates of reporting by the intrusion detection system (IDS). It can detect any change in the behaviors of smart devices quickly and easily. The IADM can improve the performance rates for IDS by maintaining the memory consumption, time consumption, and speed of the detection process.

摘要

物联网(IoT)技术为改善我们的生活提供了一种智能方式,并在工业、通信、农业等许多领域发挥作用。不幸的是,物联网网络面临着许多攻击,这些攻击可能会破坏整个网络并消耗网络资源。本文旨在提出智能流程自动化和自动配置的智能自动化检测模型(IADM),以检测和防止基于物联网的智慧城市中分布式多接入边缘计算处的恶意网络流量及行为/事件。所提出的模型包括两个阶段。第一阶段依赖于智能流程自动化(IPA)技术,包含五个模块,具体命名为数据集收集与预处理模块、智能自动化检测模块、分析模块、检测规则与动作模块以及数据库模块。在第一阶段,每个模块都组成一个智能连接模块,以给出关于每个模块的反馈报告并将信息发送到下一个模块。因此,每个流程中的任何变化都可以很容易地被检测到并标记为入侵。智能连接模块(ICM)可以减少搜索时间、提高速度并提升安全级别。第二阶段是基于强化一次性学习对攻击检测模型进行动态自适应调整。第一阶段基于使用随机森林树(RFT)、k近邻(K-NN)、J48、AdaBoost和Bagging的多分类技术。第二阶段可以基于强化学习学习新的变化行为,以检测基于物联网的智慧城市中的零日攻击和恶意事件。实验使用UNSW-NB 15数据集进行。所提出的模型使用RFT、K-NN和AdaBoost实现了约98.8%的高精度率。需要注意的是,J48分类器的准确率为85.51%​​,低于其他分类器。随后,基于J48的AdaBoost和Bagging的准确率分别为98.9%和91.41%。此外,RFT、K-NN和AdaBoost的错误率非常低。同样,所提出的模型使用RFT、K-NN、AdaBoost和Bagging实现了高精度、召回率和F1值。第二阶段依赖于通过基于强化一次性学习对攻击检测模型进行动态自适应调整来创建自动自适应模型,使用少量实例以节省物联网网络中任何智能设备的内存。所提出的自动自适应模型可以降低入侵检测系统(IDS)的误报率。它可以快速轻松地检测智能设备行为的任何变化。IADM可以通过维持内存消耗、时间消耗和检测过程的速度来提高IDS的性能率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e03/10459074/0ec396c156ea/sensors-23-07135-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验