Suppr超能文献

基于平方根 Sage-Husa 自适应鲁棒卡尔曼滤波器的无人水面艇雷达目标跟踪

Radar Target Tracking for Unmanned Surface Vehicle Based on Square Root Sage-Husa Adaptive Robust Kalman Filter.

作者信息

Qiao Shuanghu, Fan Yunsheng, Wang Guofeng, Mu Dongdong, He Zhiping

机构信息

College of Marine Electrical Engineering, Dalian Maritime University, Dalian 116026, China.

Key Laboratory of Technology and System for Intelligent Ships of Liaoning Province, Dalian 116026, China.

出版信息

Sensors (Basel). 2022 Apr 11;22(8):2924. doi: 10.3390/s22082924.

Abstract

Dynamic information such as the position and velocity of the target detected by marine radar is frequently susceptible to external measurement white noise generated by the oscillations of an unmanned surface vehicle (USV) and target. Although the Sage-Husa adaptive Kalman filter (SHAKF) has been applied to the target tracking field, the precision and stability of SHAKF remain to be improved. In this paper, a square root Sage-Husa adaptive robust Kalman filter (SR-SHARKF) algorithm together with the constant jerk model is proposed, which can not only solve the problem of filtering divergence triggered by numerical rounding errors, inaccurate system mathematics, and noise statistical models, but also improve the filtering accuracy. First, a novel square root decomposition method is proposed in the SR-SHARKF algorithm for decomposing the covariance matrix of SHAKF to assure its non-negative definiteness. After that, a three-segment approach is adopted to balance the observed and predicted states by evaluating the adaptive scale factor. Finally, the unbiased and the biased noise estimators are integrated while the interval scope of the measurement noise is constrained to jointly evaluate the measurement and observation noise for better adaptability and reliability. Simulation and experimental results demonstrate the effectiveness of the proposed algorithm in eliminating white noise triggered by the USV and target oscillations.

摘要

诸如舰载雷达探测到的目标位置和速度等动态信息,经常容易受到无人水面舰艇(USV)和目标振荡所产生的外部测量白噪声的影响。尽管Sage-Husa自适应卡尔曼滤波器(SHAKF)已应用于目标跟踪领域,但其精度和稳定性仍有待提高。本文提出了一种平方根Sage-Husa自适应鲁棒卡尔曼滤波器(SR-SHARKF)算法,并结合恒定加加速度模型,该算法不仅可以解决由数值舍入误差、不准确的系统数学模型和噪声统计模型引发的滤波发散问题,还能提高滤波精度。首先,在SR-SHARKF算法中提出了一种新颖的平方根分解方法,用于分解SHAKF的协方差矩阵,以确保其非负定性。之后,采用三段法通过评估自适应比例因子来平衡观测状态和预测状态。最后,在限制测量噪声区间范围的同时,将无偏和有偏噪声估计器相结合,共同评估测量噪声和观测噪声,以实现更好的适应性和可靠性。仿真和实验结果证明了所提算法在消除由USV和目标振荡引发的白噪声方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3460/9030864/0d0f0aa227a4/sensors-22-02924-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验