自适应鲁棒无迹卡尔曼滤波在 AUV 声纳导航中的应用。

Adaptive Robust Unscented Kalman Filter for AUV Acoustic Navigation.

机构信息

Institute of Space Science, Shandong University, Weihai 264209, China.

School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China.

出版信息

Sensors (Basel). 2019 Dec 20;20(1):60. doi: 10.3390/s20010060.

Abstract

Autonomous underwater vehicle (AUV) acoustic navigation is challenged by unknown system noise and gross errors in the acoustic observations caused by the complex marine environment. Since the classical unscented Kalman filter (UKF) algorithm cannot control the dynamic model biases and resist the influence of gross errors, an adaptive robust UKF based on the Sage-Husa filter and the robust estimation technique is proposed for AUV acoustic navigation. The proposed algorithm compensates the system noise by adopting the Sage-Husa noise estimation technique in an online manner under the condition that the system noise matrices are kept as positive or semi positive. In order to control the influence of gross errors in the acoustic observations, the equivalent gain matrix is constructed to improve the robustness of the adaptive UKF for AUV acoustic navigation based on Huber's equivalent weight function. The effectiveness of the algorithm is verified by the simulated long baseline positioning experiment of the AUV, as well as the real marine experimental data of the ultrashort baseline positioning of an underwater towed body. The results demonstrate that the adaptive UKF can estimate the system noise through the time-varying noise estimator and avoid the problem of negative definite of the system noise variance matrix. The proposed adaptive robust UKF based on the Sage-Husa filter can further reduce the influence of gross errors while adjusting the system noise, and significantly improve the accuracy and stability of AUV acoustic navigation.

摘要

自主水下航行器(AUV)声纳导航受到未知系统噪声和复杂海洋环境引起的声纳观测中的粗大误差的挑战。由于经典的无迹卡尔曼滤波器(UKF)算法无法控制动态模型偏差,也无法抵抗粗大误差的影响,因此提出了一种基于 Sage-Husa 滤波器和鲁棒估计技术的自适应鲁棒 UKF 算法,用于 AUV 声纳导航。该算法在系统噪声矩阵保持正半定的条件下,采用 Sage-Husa 噪声估计技术在线补偿系统噪声。为了控制声纳观测中粗大误差的影响,基于 Huber 等效权函数构建等效增益矩阵,提高 AUV 声纳导航自适应 UKF 的鲁棒性。通过 AUV 的长基线定位仿真实验以及水下拖曳体超短基线定位的实际海洋实验数据验证了算法的有效性。结果表明,自适应 UKF 可以通过时变噪声估计器估计系统噪声,避免系统噪声方差矩阵为负定的问题。基于 Sage-Husa 滤波器的自适应鲁棒 UKF 可以进一步减小粗大误差的影响,同时调整系统噪声,显著提高 AUV 声纳导航的精度和稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d66/6983072/75be4e971f97/sensors-20-00060-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索