Suppr超能文献

质子离子液体与水混合物的粘度和离子电导率的机器学习研究

Machine learning investigation of viscosity and ionic conductivity of protic ionic liquids in water mixtures.

作者信息

Duong Dung Viet, Tran Hung-Vu, Pathirannahalage Sachini Kadaoluwa, Brown Stuart J, Hassett Michael, Yalcin Dilek, Meftahi Nastaran, Christofferson Andrew J, Greaves Tamar L, Le Tu C

机构信息

School of Engineering, STEM College, RMIT University, GPO Box 2476, Melbourne, VIC 3001, Australia.

Department of Chemistry, University of Houston, 4800 Calhoun Road, Houston, Texas 77204-5003, USA.

出版信息

J Chem Phys. 2022 Apr 21;156(15):154503. doi: 10.1063/5.0085592.

Abstract

Ionic liquids (ILs) are well classified as designer solvents based on the ease of tailoring their properties through modifying the chemical structure of the cation and anion. However, while many structure-property relationships have been developed, these generally only identify the most dominant trends. Here, we have used machine learning on existing experimental data to construct robust models to produce meaningful predictions across a broad range of cation and anion chemical structures. Specifically, we used previously collated experimental data for the viscosity and conductivity of protic ILs [T. L. Greaves and C. J. Drummond, Chem. Rev. 115, 11379-11448 (2015)] as the inputs for multiple linear regression and neural network models. These were then used to predict the properties of all 1827 possible cation-anion combinations (excluding the input combinations). These models included the effect of water content of up to 5 wt. %. A selection of ten new protic ILs was then prepared, which validated the usefulness of the models. Overall, this work shows that relatively sparse data can be used productively to predict physicochemical properties of vast arrays of ILs.

摘要

离子液体(ILs)基于通过修饰阳离子和阴离子的化学结构来轻松定制其性质,被很好地归类为定制溶剂。然而,尽管已经建立了许多结构-性质关系,但这些关系通常只确定了最主要的趋势。在这里,我们利用现有实验数据进行机器学习,构建强大的模型,以便在广泛的阳离子和阴离子化学结构范围内做出有意义的预测。具体来说,我们使用了先前整理的质子型离子液体的粘度和电导率实验数据[T. L. Greaves和C. J. Drummond,《化学评论》115,11379 - 11448(2015)]作为多元线性回归和神经网络模型的输入。然后,这些模型被用于预测所有1827种可能的阳离子-阴离子组合(不包括输入组合)的性质。这些模型考虑了高达5 wt.%的水含量的影响。然后制备了十种新的质子型离子液体进行筛选,验证了模型的实用性。总体而言,这项工作表明,相对稀疏的数据可以有效地用于预测大量离子液体的物理化学性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验