Martin Shawn, Pratt Harry D, Anderson Travis M
Sandia National Laboratories, Albuquerque, New Mexico, 87185, USA.
Mol Inform. 2017 Jul;36(7). doi: 10.1002/minf.201600125. Epub 2017 Feb 21.
We seek to optimize Ionic liquids (ILs) for application to redox flow batteries. As part of this effort, we have developed a computational method for suggesting ILs with high conductivity and low viscosity. Since ILs consist of cation-anion pairs, we consider a method for treating ILs as pairs using product descriptors for QSPRs, a concept borrowed from the prediction of protein-protein interactions in bioinformatics. We demonstrate the method by predicting electrical conductivity, viscosity, and melting point on a dataset taken from the ILThermo database on June 18 , 2014. The dataset consists of 4,329 measurements taken from 165 ILs made up of 72 cations and 34 anions. We benchmark our QSPRs on the known values in the dataset then extend our predictions to screen all 2,448 possible cation-anion pairs in the dataset.
我们致力于优化离子液体(ILs)以应用于氧化还原液流电池。作为这项工作的一部分,我们开发了一种计算方法来推荐具有高电导率和低粘度的离子液体。由于离子液体由阳离子 - 阴离子对组成,我们考虑一种使用定量构效关系(QSPRs)的乘积描述符将离子液体作为对来处理的方法,这一概念借鉴自生物信息学中蛋白质 - 蛋白质相互作用的预测。我们通过对2014年6月18日从ILThermo数据库获取的数据集中的电导率、粘度和熔点进行预测来演示该方法。该数据集由从165种离子液体中获取的4329次测量值组成,这些离子液体由72种阳离子和34种阴离子构成。我们根据数据集中的已知值对我们的定量构效关系进行基准测试,然后扩展我们的预测以筛选数据集中所有2448种可能的阳离子 - 阴离子对。