Suppr超能文献

使用结构化生命历程建模方法(SLCMA)对敏感时期效应进行统计建模。

Statistical Modeling of Sensitive Period Effects Using the Structured Life Course Modeling Approach (SLCMA).

机构信息

Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.

Mathematics and Statistics Research Group, University of the West of England, Bristol, UK.

出版信息

Curr Top Behav Neurosci. 2022;53:215-234. doi: 10.1007/7854_2021_280.

Abstract

Sensitive periods are times during development when life experiences can have a greater impact on outcomes than at other periods during the life course. However, a dearth of sophisticated methods for studying time-dependent exposure-outcome relationships means that sensitive periods are often overlooked in research studies in favor of more simplistic and easier-to-use hypotheses such as ever being exposed, or the effect of an exposure accumulated over time. The structured life course modeling approach (SLCMA; pronounced "slick-mah") allows researchers to model complex life course hypotheses, such as sensitive periods, to determine which hypothesis best explains the amount of variation between a repeated exposure and an outcome. The SLCMA makes use of the least angle regression (LARS) variable selection technique, a type of least absolute shrinkage and selection operator (LASSO) estimation procedure, to yield a parsimonious model for the exposure-outcome relationship of interest. The results of the LARS procedure are complemented with a post-selection inference method, called selective inference, which provides unbiased effect estimates, confidence intervals, and p-values for the final explanatory model. In this chapter, we provide a brief overview of the genesis of this sensitive period modeling approach and provide a didactic step-by-step user's guide to implement the SLCMA in sensitive- period research. R code to complete the SLCMA is available on our GitHub page at: https://github.com/thedunnlab/SLCMA-pipeline .

摘要

敏感时期是指在生命发展过程中,生活经历对结果的影响比生命过程中的其他时期更大的时期。然而,用于研究与时间相关的暴露-结果关系的复杂方法稀缺,这意味着敏感时期在研究中经常被忽视,而更倾向于使用更简单、更易用的假设,例如曾经暴露过,或随着时间的推移积累的暴露效应。结构化生命历程建模方法(SLCMA;发音为“slick-mah”)允许研究人员对复杂的生命历程假设(如敏感时期)进行建模,以确定哪个假设最能解释重复暴露和结果之间的变异量。SLCMA 利用最小角度回归(LARS)变量选择技术,这是一种最小绝对收缩和选择算子(LASSO)估计程序,为感兴趣的暴露-结果关系生成一个简洁的模型。LARS 过程的结果与一种称为选择性推断的后选择推断方法相补充,该方法为最终解释模型提供无偏的效应估计、置信区间和 p 值。在本章中,我们简要概述了这种敏感时期建模方法的起源,并提供了一个教学性的逐步用户指南,以在敏感时期研究中实施 SLCMA。要完成 SLCMA 的 R 代码可在我们的 GitHub 页面上获得:https://github.com/thedunnlab/SLCMA-pipeline。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验