Suppr超能文献

口腔刷洗活检的免疫表达提高了口腔扁平苔藓和类扁平苔藓病变的诊断准确性。

Immunoexpression of oral brush biopsy enhances the accuracy of diagnosis for oral lichen planus and lichenoid lesions.

机构信息

UWA Dental School, The University of Western Australia, Perth, Western Australia, Australia.

Australian Centre for Oral Oncology Research and Education, Nedlands, Western Australia, Australia.

出版信息

J Oral Pathol Med. 2022 Jul;51(6):563-572. doi: 10.1111/jop.13301. Epub 2022 May 11.

Abstract

BACKGROUND

This study assessed the efficacy of using oral liquid-based brush cytology (OLBC) coupled with immunostained cytology-derived cell-blocks, quantified using machine-learning, in the diagnosis of oral lichen planus (OLP).

METHODS

Eighty-two patients diagnosed clinically with either OLP or oral lichenoid lesion (OLL) were included. OLBC samples were obtained from all patients before undergoing surgical biopsy. Liquid-based cytology slides and cell-blocks were prepared and assessed by cytomorphology and immunocytochemistry for four antibodies (Ki-67, BAX, NF-κB-p65, and AMACR). For comparison purposes, a sub-group of 31 matched surgical biopsy samples were selected randomly and assessed by immunohistochemistry. Patients were categorized according to their definitive diagnoses into OLP, OLL, and clinically lichenoid, but histopathologically dysplastic lesions (OEDL). Machine-learning was utilized to provide automated quantification of positively stained protein expression.

RESULTS

Cytomorphological assessment was associated with an accuracy of 77.27% in the distinction between OLP/OLL and OEDL. A strong concordance of 92.5% (κ = 0.84) of immunostaining patterns was evident between cell-blocks and tissue sections using machine-learning. A diagnostic index using a Ki-67-based model was 100% accurate in detecting lichenoid cases with epithelial dysplasia. A BAX-based model demonstrated an accuracy of 92.16%. The accuracy of cytomorphological assessment was greatly improved when it was combined with BAX immunoreactivity (95%).

CONCLUSIONS

Cell-blocks prepared from OLBC are reliable and minimally-invasive alternatives to surgical biopsies to diagnose OLLs with epithelial dysplasia when combined with Ki-67 immunostaining. Machine-learning has a promising role in the automated quantification of immunostained protein expression.

摘要

背景

本研究评估了使用液体基毛刷细胞学(OLBC)联合免疫染色细胞块,通过机器学习进行定量分析,在诊断口腔扁平苔藓(OLP)中的疗效。

方法

共纳入 82 例临床诊断为 OLP 或口腔类病变(OLL)的患者。所有患者均在接受手术活检前采集 OLBC 样本。制备液体基细胞学涂片和细胞块,通过细胞形态学和免疫细胞化学对四种抗体(Ki-67、BAX、NF-κB-p65 和 AMACR)进行评估。为了比较目的,随机选择了 31 例匹配的手术活检样本,并通过免疫组织化学进行评估。根据患者的明确诊断,将其分为 OLP、OLL 和临床类苔藓,但组织病理学为发育不良病变(OEDL)。利用机器学习提供阳性染色蛋白表达的自动定量分析。

结果

细胞形态学评估在区分 OLP/OLL 和 OEDL 方面的准确率为 77.27%。通过机器学习,细胞块和组织切片的免疫染色模式具有很强的一致性(κ=0.84)。基于 Ki-67 的模型的诊断指数在检测具有上皮发育不良的苔藓样病例时准确率为 100%。基于 BAX 的模型准确率为 92.16%。当细胞形态学评估与 BAX 免疫反应性结合时,其准确率大大提高(95%)。

结论

当与 Ki-67 免疫染色结合使用时,OLBC 制备的细胞块是诊断具有上皮发育不良的 OLL 的可靠且微创的替代方法。机器学习在免疫染色蛋白表达的自动定量分析中具有广阔的应用前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8864/9542982/5646711ad0cc/JOP-51-563-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验