Suppr超能文献

机器学习预测行直接经皮冠状动脉介入治疗的 ST 段抬高型心肌梗死患者无复流和住院死亡率。

Machine learning to predict no reflow and in-hospital mortality in patients with ST-segment elevation myocardial infarction that underwent primary percutaneous coronary intervention.

机构信息

Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021, Guangxi, China.

Department of Cardiology, The Second People's Hospital of Nanning, Guangxi, China.

出版信息

BMC Med Inform Decis Mak. 2022 Apr 24;22(1):109. doi: 10.1186/s12911-022-01853-2.

Abstract

BACKGROUND

The machine learning algorithm (MLA) was implemented to establish an optimal model to predict the no reflow (NR) process and in-hospital death that occurred in ST-elevation myocardial infarction (STEMI) patients who underwent primary percutaneous coronary intervention (pPCI).

METHODS

The data were obtained retrospectively from 854 STEMI patients who underwent pPCI. MLA was applied to predict the potential NR phenomenon and confirm the in-hospital mortality. A random sampling method was used to split the data into the training (66.7%) and testing (33.3%) sets. The final results were an average of 10 repeated procedures. The area under the curve (AUC) and the associated 95% confidence intervals (CIs) of the receiver operator characteristic were measured.

RESULTS

A random forest algorithm (RAN) had optimal discrimination for the NR phenomenon with an AUC of 0.7891 (95% CI: 0.7093-0.8688) compared with 0.6437 (95% CI: 0.5506-0.7368) for the decision tree (CTREE), 0.7488 (95% CI: 0.6613-0.8363) for the support vector machine (SVM), and 0.681 (95% CI: 0.5767-0.7854) for the neural network algorithm (NNET). The optimal RAN AUC for in-hospital mortality was 0.9273 (95% CI: 0.8819-0.9728), for SVM, 0.8935 (95% CI: 0.826-0.9611); NNET, 0.7756 (95% CI: 0.6559-0.8952); and CTREE, 0.7885 (95% CI: 0.6738-0.9033).

CONCLUSIONS

The MLA had a relatively higher performance when evaluating the NR risk and in-hospital mortality in patients with STEMI who underwent pPCI and could be utilized in clinical decision making.

摘要

背景

本研究旨在应用机器学习算法(MLA)建立一个优化模型,以预测行直接经皮冠状动脉介入治疗(pPCI)的 ST 段抬高型心肌梗死(STEMI)患者无复流(NR)过程和院内死亡。

方法

回顾性分析 854 例行 pPCI 的 STEMI 患者的数据。应用 MLA 预测潜在的 NR 现象,并确认院内死亡率。采用随机抽样法将数据分为训练(66.7%)和测试(33.3%)集。最终结果是 10 次重复程序的平均值。测量受试者工作特征的曲线下面积(AUC)和相关 95%置信区间(CI)。

结果

随机森林算法(RAN)对 NR 现象的判别效果最佳,AUC 为 0.7891(95%CI:0.7093-0.8688),而决策树(CTREE)为 0.6437(95%CI:0.5506-0.7368),支持向量机(SVM)为 0.7488(95%CI:0.6613-0.8363),神经网络算法(NNET)为 0.681(95%CI:0.5767-0.7854)。RAN 预测院内死亡率的最佳 AUC 为 0.9273(95%CI:0.8819-0.9728),SVM 为 0.8935(95%CI:0.826-0.9611),NNET 为 0.7756(95%CI:0.6559-0.8952),CTREE 为 0.7885(95%CI:0.6738-0.9033)。

结论

在评估行直接经皮冠状动脉介入治疗的 STEMI 患者的 NR 风险和院内死亡率时,MLA 的性能相对较高,可用于临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dab0/9036765/5af9b609fa3e/12911_2022_1853_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验