Tang Nan, Liu Shuang, Li Kangming, Zhou Qiang, Dai Yanan, Sun Huamei, Zhang Qingdui, Hao Ji, Qi Chunmei
Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
Front Cardiovasc Med. 2024 Oct 22;11:1419551. doi: 10.3389/fcvm.2024.1419551. eCollection 2024.
Accurate in-hospital mortality prediction following percutaneous coronary intervention (PCI) is crucial for clinical decision-making. Machine Learning (ML) and Data Mining methods have shown promise in improving medical prognosis accuracy.
We analyzed a dataset of 4,677 patients from the Regional Vascular Center of Primorsky Regional Clinical Hospital No. 1 in Vladivostok, collected between 2015 and 2021. We utilized Extreme Gradient Boosting, Histogram Gradient Boosting, Light Gradient Boosting, and Stochastic Gradient Boosting for mortality risk prediction after primary PCI in patients with acute ST-elevation myocardial infarction. Model selection was performed using Monte Carlo Cross-validation. Feature selection was enhanced through Recursive Feature Elimination (RFE) and Shapley Additive Explanations (SHAP). We further developed hybrid models using Augmented Grey Wolf Optimizer (AGWO), Bald Eagle Search Optimization (BES), Golden Jackal Optimizer (GJO), and Puma Optimizer (PO), integrating features selected by these methods with the traditional GRACE score.
The hybrid models demonstrated superior prediction accuracy. In scenario (1), utilizing GRACE scale features, the Light Gradient Boosting Machine (LGBM) and Extreme Gradient Boosting (XGB) models optimized with BES achieved Recall values of 0.944 and 0.954, respectively. In scenarios (2) and (3), employing SHAP and RFE-selected features, the LGB models attained Recall values of 0.963 and 0.977, while the XGB models achieved 0.978 and 0.99.
The study indicates that ML models, particularly the XGB optimized with BES, can outperform the conventional GRACE score in predicting in-hospital mortality. The hybrid models' enhanced accuracy presents a significant step forward in risk assessment for patients post-PCI, offering a potential alternative to existing clinical tools. These findings underscore the potential of ML in optimizing patient care and outcomes in cardiovascular medicine.
经皮冠状动脉介入治疗(PCI)后准确预测院内死亡率对于临床决策至关重要。机器学习(ML)和数据挖掘方法在提高医学预后准确性方面已显示出前景。
我们分析了2015年至2021年间从符拉迪沃斯托克第一滨海边疆区临床医院区域血管中心收集的4677例患者的数据集。我们使用极端梯度提升、直方图梯度提升、轻梯度提升和随机梯度提升来预测急性ST段抬高型心肌梗死患者初次PCI后的死亡风险。使用蒙特卡罗交叉验证进行模型选择。通过递归特征消除(RFE)和夏普利加性解释(SHAP)增强特征选择。我们进一步使用增强灰狼优化器(AGWO)、秃鹰搜索优化器(BES)、金豺优化器(GJO)和美洲狮优化器(PO)开发了混合模型,将这些方法选择的特征与传统的GRACE评分相结合。
混合模型表现出卓越的预测准确性。在情景(1)中,利用GRACE量表特征,使用BES优化的轻梯度提升机(LGBM)和极端梯度提升(XGB)模型的召回值分别为0.944和0.954。在情景(2)和(3)中,采用SHAP和RFE选择的特征,LGB模型的召回值为0.963和0.977,而XGB模型达到0.978和0.99。
该研究表明,ML模型,特别是用BES优化的XGB,在预测院内死亡率方面可以优于传统的GRACE评分。混合模型提高的准确性在PCI后患者的风险评估方面向前迈出了重要一步,为现有临床工具提供了潜在的替代方案。这些发现强调了ML在优化心血管医学患者护理和结局方面的潜力。