Suppr超能文献

机器学习临床验证研究的样本量分析

Sample Size Analysis for Machine Learning Clinical Validation Studies.

作者信息

Goldenholz Daniel M, Sun Haoqi, Ganglberger Wolfgang, Westover M Brandon

机构信息

Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.

Department of Neurology, Harvard Medical School, Boston, MA 02215, USA.

出版信息

Biomedicines. 2023 Feb 23;11(3):685. doi: 10.3390/biomedicines11030685.

Abstract

BACKGROUND

Before integrating new machine learning (ML) into clinical practice, algorithms must undergo validation. Validation studies require sample size estimates. Unlike hypothesis testing studies seeking a -value, the goal of validating predictive models is obtaining estimates of model performance. There is no standard tool for determining sample size estimates for clinical validation studies for machine learning models.

METHODS

Our open-source method, Sample Size Analysis for Machine Learning (SSAML) was described and was tested in three previously published models: brain age to predict mortality (Cox Proportional Hazard), COVID hospitalization risk prediction (ordinal regression), and seizure risk forecasting (deep learning).

RESULTS

Minimum sample sizes were obtained in each dataset using standardized criteria.

DISCUSSION

SSAML provides a formal expectation of precision and accuracy at a desired confidence level. SSAML is open-source and agnostic to data type and ML model. It can be used for clinical validation studies of ML models.

摘要

背景

在将新的机器学习(ML)整合到临床实践之前,算法必须经过验证。验证研究需要估计样本量。与寻求p值的假设检验研究不同,验证预测模型的目标是获得模型性能的估计值。目前尚无用于确定机器学习模型临床验证研究样本量估计的标准工具。

方法

我们描述了开源方法“机器学习样本量分析(SSAML)”,并在之前发表的三个模型中进行了测试:预测死亡率的脑龄(Cox比例风险模型)、新冠住院风险预测(有序回归)和癫痫发作风险预测(深度学习)。

结果

使用标准化标准在每个数据集中获得了最小样本量。

讨论

SSAML在所需的置信水平上提供了对精度和准确性的正式预期。SSAML是开源的,与数据类型和ML模型无关。它可用于ML模型的临床验证研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1640/10045793/5a8709577afc/biomedicines-11-00685-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验