Motoki Shingo, Kawahara Genta, Shimizu Masaki
Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
Philos Trans A Math Phys Eng Sci. 2022 Jun 13;380(2225):20210037. doi: 10.1098/rsta.2021.0037. Epub 2022 Apr 25.
Nonlinear simple invariant solutions representing the ultimate scaling have been discovered to the Navier-Stokes equations for thermal convection between horizontal no-slip permeable walls with a distance [Formula: see text] and a constant temperature difference [Formula: see text]. On the permeable walls, the vertical transpiration velocity is assumed to be proportional to the local pressure fluctuations, i.e. [Formula: see text] (Jiménez 2001 , , 89-117. (doi:10.1017/S0022112001004888)). Two-dimensional steady solutions bifurcating from a conduction state have been obtained using a Newton-Krylov iteration up to the Rayleigh number [Formula: see text] for the Prandtl number [Formula: see text], the horizontal period [Formula: see text] and the permeability parameter [Formula: see text]-[Formula: see text], [Formula: see text] being the buoyancy-induced terminal velocity. The wall permeability has a significant impact on the onset and the scaling properties of the found steady 'wall-bounded' thermal convection. The ultimate scaling [Formula: see text] has been observed for [Formula: see text] at high [Formula: see text], where [Formula: see text] is the Nusselt number. In the steady ultimate state, large-scale thermal plumes fully extend from one wall to the other, inducing the strong vertical velocity comparable with the terminal velocity [Formula: see text] as well as intense temperature variation of [Formula: see text] even in the bulk region. As a consequence, the wall-to-wall heat flux scales with [Formula: see text] independent of thermal diffusivity, although the heat transfer on the walls is dominated by thermal conduction. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 1)'.
对于水平无滑移渗透壁之间具有距离[公式:见原文]和恒定温差[公式:见原文]的热对流,已发现表示最终标度的非线性简单不变解适用于纳维 - 斯托克斯方程。在渗透壁上,假设垂直蒸腾速度与局部压力波动成正比,即[公式:见原文](希门尼斯,2001年,第89 - 117页。(doi:10.1017/S0022112001004888))。使用牛顿 - 克里洛夫迭代法,已获得从传导状态分岔出的二维稳态解,直至普朗特数[公式:见原文]、水平周期[公式:见原文]和渗透率参数[公式:见原文]-[公式:见原文]的瑞利数[公式:见原文],[公式:见原文]为浮力诱导的终端速度。壁渗透率对所发现的稳态“壁面受限”热对流的起始和标度特性有显著影响。在高[公式:见原文]时,对于[公式:见原文]观察到最终标度[公式:见原文],其中[公式:见原文]是努塞尔数。在稳态最终状态下,大规模热羽流从一个壁完全延伸到另一个壁,即使在主体区域也会引起与终端速度[公式:见原文]相当的强垂直速度以及[公式:见原文]的强烈温度变化。因此,壁到壁的热通量按[公式:见原文]标度,与热扩散率无关,尽管壁上的热传递由热传导主导。本文是主题问题“物理流体动力学中的数学问题(第1部分)”的一部分。