Bissell J J
Department of Physics , University of Bath , BA2 7AY Bath, UK.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160649. doi: 10.1098/rspa.2016.0649.
By substituting the Cattaneo-Christov heat-flow model for the more usual parabolic Fourier law, we consider the impact of hyperbolic heat-flow effects on thermal convection in the classic problem of a magnetized conducting fluid layer heated from below. For stationary convection, the system is equivalent to that studied by Chandrasekhar ( 1961), and with free boundary conditions we recover the classical critical Rayleigh number [Formula: see text] which exhibits inhibition of convection by the field according to [Formula: see text] as [Formula: see text], where is the Chandrasekhar number. However, for oscillatory convection we find that the critical Rayleigh number [Formula: see text] is given by a more complicated function of the thermal Prandtl number [Formula: see text], magnetic Prandtl number [Formula: see text] and Cattaneo number . To elucidate features of this dependence, we neglect [Formula: see text] (in which case overstability would be classically forbidden), and thereby obtain an expression for the Rayleigh number that is far less strongly inhibited by the field, with limiting behaviour [Formula: see text], as [Formula: see text]. One consequence of this weaker dependence is that onset of instability occurs as overstability provided exceeds a threshold value (); indeed, crucially we show that when is large, [Formula: see text], meaning that oscillatory modes are preferred even when itself is small. Similar behaviour is demonstrated in the case of fixed boundaries by means of a novel numerical solution.
通过用卡塔尼奥 - 克里斯托夫热流模型替代更常用的抛物型傅里叶定律,我们考虑了双曲热流效应在经典的从下方加热的磁化导电流体层热对流问题中的影响。对于稳态对流,该系统等同于钱德拉塞卡(1961年)所研究的系统,并且在自由边界条件下,我们恢复了经典的临界瑞利数[公式:见原文],根据[公式:见原文],当[公式:见原文]时,该临界瑞利数表现出磁场对对流的抑制作用,其中 是钱德拉塞卡数。然而,对于振荡对流,我们发现临界瑞利数[公式:见原文]由热普朗特数[公式:见原文]、磁普朗特数[公式:见原文]和卡塔尼奥数 的更复杂函数给出。为了阐明这种依赖性的特征,我们忽略[公式:见原文](在这种情况下,经典地禁止过稳定性),从而得到一个瑞利数的表达式,该表达式受磁场抑制的程度要小得多,其极限行为为[公式:见原文],当[公式:见原文]时。这种较弱依赖性的一个结果是,只要 超过阈值(),不稳定性就会以过稳定性的形式出现;实际上,至关重要的是我们表明,当 很大时,[公式:见原文],这意味着即使 本身很小时,振荡模式也是优选的。通过一种新颖的数值解法,在固定边界情况下也证明了类似的行为。