Suppr超能文献

具有卡塔尼奥-克里斯托夫热流模型的磁化导电流体中的热对流

Thermal convection in a magnetized conducting fluid with the Cattaneo-Christov heat-flow model.

作者信息

Bissell J J

机构信息

Department of Physics , University of Bath , BA2 7AY Bath, UK.

出版信息

Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160649. doi: 10.1098/rspa.2016.0649.

Abstract

By substituting the Cattaneo-Christov heat-flow model for the more usual parabolic Fourier law, we consider the impact of hyperbolic heat-flow effects on thermal convection in the classic problem of a magnetized conducting fluid layer heated from below. For stationary convection, the system is equivalent to that studied by Chandrasekhar ( 1961), and with free boundary conditions we recover the classical critical Rayleigh number [Formula: see text] which exhibits inhibition of convection by the field according to [Formula: see text] as [Formula: see text], where is the Chandrasekhar number. However, for oscillatory convection we find that the critical Rayleigh number [Formula: see text] is given by a more complicated function of the thermal Prandtl number [Formula: see text], magnetic Prandtl number [Formula: see text] and Cattaneo number . To elucidate features of this dependence, we neglect [Formula: see text] (in which case overstability would be classically forbidden), and thereby obtain an expression for the Rayleigh number that is far less strongly inhibited by the field, with limiting behaviour [Formula: see text], as [Formula: see text]. One consequence of this weaker dependence is that onset of instability occurs as overstability provided exceeds a threshold value (); indeed, crucially we show that when is large, [Formula: see text], meaning that oscillatory modes are preferred even when itself is small. Similar behaviour is demonstrated in the case of fixed boundaries by means of a novel numerical solution.

摘要

通过用卡塔尼奥 - 克里斯托夫热流模型替代更常用的抛物型傅里叶定律,我们考虑了双曲热流效应在经典的从下方加热的磁化导电流体层热对流问题中的影响。对于稳态对流,该系统等同于钱德拉塞卡(1961年)所研究的系统,并且在自由边界条件下,我们恢复了经典的临界瑞利数[公式:见原文],根据[公式:见原文],当[公式:见原文]时,该临界瑞利数表现出磁场对对流的抑制作用,其中 是钱德拉塞卡数。然而,对于振荡对流,我们发现临界瑞利数[公式:见原文]由热普朗特数[公式:见原文]、磁普朗特数[公式:见原文]和卡塔尼奥数 的更复杂函数给出。为了阐明这种依赖性的特征,我们忽略[公式:见原文](在这种情况下,经典地禁止过稳定性),从而得到一个瑞利数的表达式,该表达式受磁场抑制的程度要小得多,其极限行为为[公式:见原文],当[公式:见原文]时。这种较弱依赖性的一个结果是,只要 超过阈值(),不稳定性就会以过稳定性的形式出现;实际上,至关重要的是我们表明,当 很大时,[公式:见原文],这意味着即使 本身很小时,振荡模式也是优选的。通过一种新颖的数值解法,在固定边界情况下也证明了类似的行为。

相似文献

1
Thermal convection in a magnetized conducting fluid with the Cattaneo-Christov heat-flow model.
Proc Math Phys Eng Sci. 2016 Nov;472(2195):20160649. doi: 10.1098/rspa.2016.0649.
2
On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model.
Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140845. doi: 10.1098/rspa.2014.0845.
3
Onset of Soret-induced convection in a horizontal layer of ternary fluid with fixed vertical heat flux at the boundaries.
Eur Phys J E Soft Matter. 2017 Feb;40(2):15. doi: 10.1140/epje/i2017-11505-9. Epub 2017 Feb 14.
6
Classical 1/3 scaling of convection holds up to Ra = 10.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7594-7598. doi: 10.1073/pnas.1922794117. Epub 2020 Mar 25.
7
The convective instability of a Maxwell-Cattaneo fluid in the presence of a vertical magnetic field.
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20200494. doi: 10.1098/rspa.2020.0494. Epub 2020 Sep 30.
8
Steady thermal convection representing the ultimate scaling.
Philos Trans A Math Phys Eng Sci. 2022 Jun 13;380(2225):20210037. doi: 10.1098/rsta.2021.0037. Epub 2022 Apr 25.
9
Bounds on heat flux for Rayleigh-Bénard convection between Navier-slip fixed-temperature boundaries.
Philos Trans A Math Phys Eng Sci. 2022 Jun 13;380(2225):20210025. doi: 10.1098/rsta.2021.0025. Epub 2022 Apr 25.
10
Heat transport in Rayleigh-Bénard convection with linear marginality.
Philos Trans A Math Phys Eng Sci. 2022 Jun 13;380(2225):20210039. doi: 10.1098/rsta.2021.0039. Epub 2022 Apr 25.

引用本文的文献

1
The convective instability of a Maxwell-Cattaneo fluid in the presence of a vertical magnetic field.
Proc Math Phys Eng Sci. 2020 Sep;476(2241):20200494. doi: 10.1098/rspa.2020.0494. Epub 2020 Sep 30.

本文引用的文献

1
Impact of Cattaneo-Christov Heat Flux in Jeffrey Fluid Flow with Homogeneous-Heterogeneous Reactions.
PLoS One. 2016 Feb 9;11(2):e0148662. doi: 10.1371/journal.pone.0148662. eCollection 2016.
2
On oscillatory convection with the Cattaneo-Christov hyperbolic heat-flow model.
Proc Math Phys Eng Sci. 2015 Mar 8;471(2175):20140845. doi: 10.1098/rspa.2014.0845.
3
Nonstationary heat conduction in one-dimensional models with substrate potential.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 1):011105. doi: 10.1103/PhysRevE.85.011105. Epub 2012 Jan 3.
4
Analytical thermal-optic model for laser heating of biological tissue using the hyperbolic heat transfer equation.
Math Med Biol. 2009 Sep;26(3):187-200. doi: 10.1093/imammb/dqp002. Epub 2009 Feb 20.
5
Effect of the thermal wave in radiofrequency ablation modeling: an analytical study.
Phys Med Biol. 2008 Mar 7;53(5):1447-62. doi: 10.1088/0031-9155/53/5/018. Epub 2008 Feb 19.
6
Heat conduction paradox involving second-sound propagation in moving media.
Phys Rev Lett. 2005 Apr 22;94(15):154301. doi: 10.1103/PhysRevLett.94.154301.
7
Ballistic-diffusive heat-conduction equations.
Phys Rev Lett. 2001 Mar 12;86(11):2297-300. doi: 10.1103/PhysRevLett.86.2297.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验