Suppr超能文献

基于柯尔莫哥洛夫4/5定律和排列的湍流自正则化。

Self-regularization in turbulence from the Kolmogorov 4/5-law and alignment.

作者信息

Drivas Theodore D

机构信息

Department of Mathematics, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210033. doi: 10.1098/rsta.2021.0033. Epub 2022 May 9.

Abstract

A defining feature of three-dimensional hydrodynamic turbulence is that the rate of energy dissipation is bounded away from zero as viscosity is decreased (Reynolds number increased). This phenomenon-anomalous dissipation-is sometimes called the 'zeroth law of turbulence' as it underpins many celebrated theoretical predictions. Another robust feature observed in turbulence is that velocity structure functions [Formula: see text] exhibit persistent power-law scaling in the inertial range, namely [Formula: see text] for exponents [Formula: see text] over an ever increasing (with Reynolds) range of scales. This behaviour indicates that the velocity field retains some fractional differentiability uniformly in the Reynolds number. The Kolmogorov 1941 theory of turbulence predicts that [Formula: see text] for all [Formula: see text] and Onsager's 1949 theory establishes the requirement that [Formula: see text] for [Formula: see text] for consistency with the zeroth law. Empirically, [Formula: see text] and [Formula: see text], suggesting that turbulent Navier-Stokes solutions approximate dissipative weak solutions of the Euler equations possessing (nearly) the minimal degree of singularity required to sustain anomalous dissipation. In this note, we adopt an experimentally supported hypothesis on the anti-alignment of velocity increments with their separation vectors and demonstrate that the inertial dissipation provides a regularization mechanism via the Kolmogorov 4/5-law. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 2)'.

摘要

三维流体动力学湍流的一个决定性特征是,随着粘度降低(雷诺数增加),能量耗散率远离零值。这种现象——反常耗散——有时被称为“湍流零定律”,因为它是许多著名理论预测的基础。在湍流中观察到的另一个稳健特征是,速度结构函数[公式:见正文]在惯性范围内呈现持续的幂律标度,即在不断增加(随雷诺数)的尺度范围内,对于指数[公式:见正文],有[公式:见正文]。这种行为表明速度场在雷诺数上均匀地保持一定程度的分数可微性。1941年柯尔莫哥洛夫的湍流理论预测,对于所有[公式:见正文],[公式:见正文],1949年昂萨格的理论确定了要求,即对于[公式:见正文],[公式:见正文],以与零定律保持一致。从经验上看,[公式:见正文]和[公式:见正文],这表明湍流的纳维-斯托克斯解近似于欧拉方程的耗散弱解,这些弱解具有(几乎)维持反常耗散所需的最小奇异性程度。在本笔记中,我们采用一个关于速度增量与其分离向量反平行排列的实验支持假设,并证明惯性耗散通过柯尔莫哥洛夫4/5定律提供了一种正则化机制。本文是主题为“物理流体动力学中的数学问题(第2部分)”的一部分。

相似文献

1
Self-regularization in turbulence from the Kolmogorov 4/5-law and alignment.基于柯尔莫哥洛夫4/5定律和排列的湍流自正则化。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210033. doi: 10.1098/rsta.2021.0033. Epub 2022 May 9.
2
On the Prandtl-Kolmogorov 1-equation model of turbulence.关于湍流的普朗特 - 柯尔莫哥洛夫单方程模型。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210054. doi: 10.1098/rsta.2021.0054. Epub 2022 May 9.
3
The Onsager theory of wall-bounded turbulence and Taylor's momentum anomaly.昂萨格壁面约束湍流理论与泰勒动量异常
Philos Trans A Math Phys Eng Sci. 2022 Mar 7;380(2218):20210079. doi: 10.1098/rsta.2021.0079. Epub 2022 Jan 17.
4
λ-Navier-Stokes turbulence.λ-纳维-斯托克斯湍流
Philos Trans A Math Phys Eng Sci. 2022 Mar 21;380(2219):20210243. doi: 10.1098/rsta.2021.0243. Epub 2022 Jan 31.
6
Self-similar properties of avalanche statistics in a simple turbulent model.一个简单湍流模型中雪崩统计的自相似特性。
Philos Trans A Math Phys Eng Sci. 2022 Mar 7;380(2218):20210074. doi: 10.1098/rsta.2021.0074. Epub 2022 Jan 17.
7
Large deviations, singularity, and lognormality of energy dissipation in turbulence.
Phys Rev E. 2020 Jun;101(6-1):061101. doi: 10.1103/PhysRevE.101.061101.
8
Steady thermal convection representing the ultimate scaling.稳定热对流代表最终的尺度变换。
Philos Trans A Math Phys Eng Sci. 2022 Jun 13;380(2225):20210037. doi: 10.1098/rsta.2021.0037. Epub 2022 Apr 25.
9
Dissipation-range fluid turbulence and thermal noise.耗散范围流体湍流与热噪声。
Phys Rev E. 2022 Jun;105(6-2):065113. doi: 10.1103/PhysRevE.105.065113.
10
Second order structure functions for higher powers of turbulent velocity.湍流速度高次幂的二阶结构函数。
J Phys Condens Matter. 2019 Dec 4;31(48):484001. doi: 10.1088/1361-648X/ab38ca. Epub 2019 Aug 6.

引用本文的文献

1
Editorial: Mathematical problems in physical fluid dynamics: part II.社论:物理流体动力学中的数学问题:第二部分。
Philos Trans A Math Phys Eng Sci. 2022 Jun 27;380(2226):20210057. doi: 10.1098/rsta.2021.0057. Epub 2022 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验