Suppr超能文献

基于模型的晚期癌症患者伊立替康引起的 4 级中性粒细胞减少症预测:人口统计学和临床因素的影响。

Model-Based Prediction of Irinotecan-Induced Grade 4 Neutropenia in Advanced Cancer Patients: Influence of Demographic and Clinical Factors.

机构信息

Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.

出版信息

Clin Pharmacol Ther. 2022 Aug;112(2):316-326. doi: 10.1002/cpt.2621. Epub 2022 May 18.

Abstract

Severe neutropenia is the major dose-liming toxicity of irinotecan-based chemotherapy. The objective was to assess to what extent a population pharmacokinetic/pharmacodynamic model including patient-specific demographic/clinical characteristics, individual pharmacokinetics, and absolute neutrophil counts (ANCs) can predict irinotecan-induced grade 4 neutropenia. A semimechanistic population pharmacokinetic/pharmacodynamic model was developed to describe neutrophil response over time in 197 patients with cancer receiving irinotecan. For covariate analysis, sex, race, age, pretreatment total bilirubin, and body surface area were evaluated to identify significant covariates on system-related parameters (mean transit time (MTT) and ɣ) and sensitivity to neutropenia effects of irinotecan and SN-38 (SLOPE). The model-based simulation was performed to assess the contribution of the identified covariates, individual pharmacokinetics, and baseline ANC alone or with incremental addition of weekly ANC up to 3 weeks on predicting irinotecan-induced grade 4 neutropenia. The time course of neutrophil response was described using the model assuming that irinotecan and SN-38 have toxic effects on bone marrow proliferating cells. Sex and pretreatment total bilirubin explained 10.5% of interindividual variability in MTT. No covariates were identified for SLOPE and γ. Incorporating sex and pretreatment total bilirubin (area under the receiver operating characteristic curve (AUC-ROC): 50%, 95% CI 50-50%) or with the addition of individual pharmacokinetics (AUC-ROC: 62%, 95% CI 53-71%) in the model did not result in accurate prediction of grade 4 neutropenia. However, incorporating ANC only at baseline and week 1 in the model achieved a good prediction (AUC-ROC: 78%, 95% CI 69-88%). These results demonstrate the potential applicability of a model-based approach to predict irinotecan-induced neutropenia, which ultimately allows for personalized intervention to maximize treatment outcomes.

摘要

严重中性粒细胞减少是伊立替康为基础的化疗的主要剂量限制毒性。本研究旨在评估包括患者特定的人口统计学/临床特征、个体药代动力学和绝对中性粒细胞计数(ANC)在内的群体药代动力学/药效动力学模型在多大程度上可以预测伊立替康引起的 4 级中性粒细胞减少症。为了进行协变量分析,评估了性别、种族、年龄、预处理总胆红素和体表面积,以确定对系统相关参数(平均传输时间(MTT)和γ)和伊立替康和 SN-38 对中性粒细胞减少作用的敏感性(SLOPE)有显著影响的协变量。基于模型的模拟用于评估所确定的协变量、个体药代动力学以及基线 ANC 单独或在 3 周内每周 ANC 的增量添加对预测伊立替康引起的 4 级中性粒细胞减少症的贡献。使用该模型描述中性粒细胞反应的时间过程,假设伊立替康和 SN-38 对骨髓增殖细胞有毒性作用。性别和预处理总胆红素解释了 MTT 个体间变异性的 10.5%。未确定 SLOPE 和γ的协变量。在模型中加入性别和预处理总胆红素(接收者操作特征曲线下面积(AUC-ROC):50%,95%CI 50-50%)或加入个体药代动力学(AUC-ROC:62%,95%CI 53-71%)并未导致 4 级中性粒细胞减少症的准确预测。然而,在模型中仅在基线和第 1 周加入 ANC 可实现良好的预测(AUC-ROC:78%,95%CI 69-88%)。这些结果表明,基于模型的方法预测伊立替康引起的中性粒细胞减少症具有潜在的适用性,最终可以实现个性化干预,以最大限度地提高治疗效果。

相似文献

本文引用的文献

4
Status Toward the Implementation of Precision Dosing in Children.儿童精准用药实施现状。
J Clin Pharmacol. 2021 Jun;61 Suppl 1:S36-S51. doi: 10.1002/jcph.1830.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验