Suppr超能文献

基于统计的非相邻依存关系切分。

Statistically based chunking of nonadjacent dependencies.

机构信息

Department of Psychology.

出版信息

J Exp Psychol Gen. 2022 Nov;151(11):2623-2640. doi: 10.1037/xge0001207. Epub 2022 Apr 25.

Abstract

How individuals learn complex regularities in the environment and generalize them to new instances is a key question in cognitive science. Although previous investigations have advocated the idea that learning and generalizing depend upon separate processes, the same basic learning mechanisms may account for both. In language learning experiments, these mechanisms have typically been studied in isolation of broader cognitive phenomena such as memory, perception, and attention. Here, we show how learning and generalization in language is embedded in these broader theories by testing learners on their ability to chunk nonadjacent dependencies-a key structure in language but a challenge to theories that posit learning through the memorization of structure. In two studies, adult participants were trained and tested on an artificial language containing nonadjacent syllable dependencies, using a novel chunking-based serial recall task involving verbal repetition of target sequences (formed from learned strings) and scrambled foils. Participants recalled significantly more syllables, bigrams, trigrams, and nonadjacent dependencies from sequences conforming to the language's statistics (both learned and generalized sequences). They also encoded and generalized specific nonadjacent chunk information. These results suggest that participants chunk remote dependencies and rapidly generalize this information to novel structures. The results thus provide further support for learning-based approaches to language acquisition, and link statistical learning to broader cognitive mechanisms of memory. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

摘要

个体如何在环境中学习复杂的规律并将其推广到新的实例,这是认知科学中的一个关键问题。尽管之前的研究已经提出了这样的观点,即学习和泛化依赖于不同的过程,但相同的基本学习机制可能同时解释这两个过程。在语言学习实验中,这些机制通常与记忆、感知和注意力等更广泛的认知现象分开进行研究。在这里,我们通过测试学习者在非相邻依赖性上的切分能力来展示语言学习和泛化是如何嵌入这些更广泛的理论中的,非相邻依赖性是语言中的关键结构,但对于那些通过记忆结构来学习的理论来说是一个挑战。在两项研究中,成年参与者在包含非相邻音节依赖关系的人工语言中接受训练和测试,使用一种新的基于切分的序列回忆任务,涉及目标序列(由所学字符串组成)和打乱的诱饵的口头重复。参与者从符合语言统计数据的序列(学习和泛化的序列)中回忆出更多的音节、双字母组合、三字母组合和非相邻依赖关系。他们还对特定的非相邻切块信息进行了编码和泛化。这些结果表明,参与者对远程依赖关系进行切块,并迅速将此信息推广到新的结构。因此,这些结果为基于学习的语言习得方法提供了进一步的支持,并将统计学习与记忆等更广泛的认知机制联系起来。(PsycInfo 数据库记录(c)2022 APA,保留所有权利)。

相似文献

1
Statistically based chunking of nonadjacent dependencies.基于统计的非相邻依存关系切分。
J Exp Psychol Gen. 2022 Nov;151(11):2623-2640. doi: 10.1037/xge0001207. Epub 2022 Apr 25.
2
Formal language hierarchy reflects different levels of cognitive complexity.正式语言层级反映了不同认知复杂度的层次。
J Exp Psychol Learn Mem Cogn. 2023 Apr;49(4):642-660. doi: 10.1037/xlm0001182. Epub 2022 Oct 6.
8
Variability and detection of invariant structure.变异性与不变结构的检测
Psychol Sci. 2002 Sep;13(5):431-6. doi: 10.1111/1467-9280.00476.

引用本文的文献

1
Lexical Surprisal Shapes the Time Course of Syntactic Structure Building.词汇意外性塑造句法结构构建的时间进程。
Neurobiol Lang (Camb). 2024 Oct 11;5(4):942-980. doi: 10.1162/nol_a_00155. eCollection 2024.

本文引用的文献

1
Benefits and pitfalls of data compression in visual working memory.视觉工作记忆中数据压缩的优缺点。
Atten Percept Psychophys. 2021 Oct;83(7):2843-2864. doi: 10.3758/s13414-021-02333-x. Epub 2021 Jun 15.
3
The Developmental Trajectory of Nonadjacent Dependency Learning.非相邻依赖学习的发展轨迹
Infancy. 2005 Mar;7(2):183-206. doi: 10.1207/s15327078in0702_4. Epub 2005 Mar 1.
4
Measuring children's auditory statistical learning via serial recall.通过系列回忆来测量儿童的听觉统计学习。
J Exp Child Psychol. 2020 Dec;200:104964. doi: 10.1016/j.jecp.2020.104964. Epub 2020 Aug 25.
5
Non-adjacent Dependency Learning in Humans and Other Animals.人类和其他动物中的非相邻依赖学习
Top Cogn Sci. 2020 Jul;12(3):843-858. doi: 10.1111/tops.12381. Epub 2018 Sep 8.
9
Chunking and redintegration in verbal short-term memory.言语工作记忆中的分块与整合。
J Exp Psychol Learn Mem Cogn. 2020 May;46(5):872-893. doi: 10.1037/xlm0000762. Epub 2019 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验