Suppr超能文献

统计诱导分块召回:基于记忆的统计学习方法。

Statistically Induced Chunking Recall: A Memory-Based Approach to Statistical Learning.

机构信息

Department of Psychology, Cornell University.

Department of Communication Sciences and Disorders, University of Iowa.

出版信息

Cogn Sci. 2020 Jul;44(7):e12848. doi: 10.1111/cogs.12848.

Abstract

The computations involved in statistical learning have long been debated. Here, we build on work suggesting that a basic memory process, chunking, may account for the processing of statistical regularities into larger units. Drawing on methods from the memory literature, we developed a novel paradigm to test statistical learning by leveraging a robust phenomenon observed in serial recall tasks: that short-term memory is fundamentally shaped by long-term distributional learning. In the statistically induced chunking recall (SICR) task, participants are exposed to an artificial language, using a standard statistical learning exposure phase. Afterward, they recall strings of syllables that either follow the statistics of the artificial language or comprise the same syllables presented in a random order. We hypothesized that if individuals had chunked the artificial language into word-like units, then the statistically structured items would be more accurately recalled relative to the random controls. Our results demonstrate that SICR effectively captures learning in both the auditory and visual modalities, with participants displaying significantly improved recall of the statistically structured items, and even recall specific trigram chunks from the input. SICR also exhibits greater test-retest reliability in the auditory modality and sensitivity to individual differences in both modalities than the standard two-alternative forced-choice task. These results thereby provide key empirical support to the chunking account of statistical learning and contribute a valuable new tool to the literature.

摘要

统计学习中的计算一直存在争议。在这里,我们基于这样一种观点展开研究,即基本的记忆过程——组块化,可以解释将统计规律处理为更大的单元的过程。借鉴记忆文献中的方法,我们开发了一种新的范例,通过利用序列回忆任务中观察到的一种稳健现象来测试统计学习:即短期记忆从根本上受到长期分布学习的塑造。在统计诱导的组块回忆(SICR)任务中,参与者接触到一种人工语言,使用标准的统计学习暴露阶段。之后,他们回忆出遵循人工语言统计规律的音节串,或者回忆出以随机顺序呈现的相同音节。我们假设,如果个体将人工语言组块化为类似单词的单元,那么相对于随机对照,统计结构的项目将更准确地被回忆起来。我们的结果表明,SICR 有效地捕捉了听觉和视觉两种模式下的学习,参与者对统计结构项目的回忆显著提高,甚至可以回忆起输入中的特定三字母组块。与标准的二选一强制选择任务相比,SICR 在听觉模式下具有更高的测试重测可靠性和对两种模式下个体差异的敏感性。这些结果为统计学习的组块化解释提供了关键的实证支持,并为文献贡献了一种有价值的新工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验