Thomas Alen Sam, Immanuel Philip Nathaniel, Prasad Neena, Goldreich Achiad, Prilusky Jonathan, Carmieli Raanan, Yadgarov Lena
Department of Chemical Engineering, Ariel University 4070000 Israel
Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel.
Nanoscale Adv. 2025 May 6. doi: 10.1039/d5na00217f.
CsPbBr (CPB) perovskite nanocrystals (NCs) have attracted considerable interest due to their outstanding charge carrier mobility, long diffusion lengths, and efficient visible light absorption, making them ideal candidates for photocatalysis, light-emitting diodes (LEDs), solar cells, and photodetectors. However, their practical applications are limited by poor environmental stability. To address this challenge, we employ a zeolitic imidazolate framework (ZIF), specifically ZIF-8, as a stabilizing matrix for its exceptional thermal and chemical stability, high surface area, and versatile synthesis routes. The CPB/ZIF-8 nanocomposite was synthesized by integrating hot-injection-produced CPB NCs with ZIF-8 using an optimized mixing approach, ensuring a uniform NCs distribution. Electron microscopy (EM) analysis confirmed the well-controlled and uniform distribution of the NCs on the surface of the ZIF-8. Moreover, the Fourier-transform infrared spectroscopy (FTIR) revealed ligand exchange, where the imidazole linkers of the ZIF-8 structure replace the NCs ligands. The process advances almost epitaxial attachment of the latter, thus promoting effective charge interactions in the integration process. Indeed, we observe that upon formation of the composite, there is a 92% quenching in the photoluminescence (PL) of the NCs. This finding further indicates efficient charge separation and reduced electron-hole recombination. To gain deeper insight into the charge transfer mechanisms, we conducted electron paramagnetic resonance (EPR) measurements to compare the radical generation capabilities of CPB and ZIF with those of the CPB/ZIF composite. The composite exhibited superior radical generation capabilities, particularly hydroxyl radicals (˙OH), indicating enhanced charge transfer. These findings suggest that the composite is a highly promising candidate for photocatalysis. Building on these findings, we explored the photocatalytic abilities of the composite through dye degradation experiments, using methyl orange (MO) and bromocresol green (BCG) as model dyes. The CPB/ZIF nanocomposite demonstrated significantly enhanced photocatalytic performance compared to pristine ZIF and CPB NCs. Specifically, its degradation rates were 1.48× and 1.75× higher for MO and BCG, respectively, than those of CPB NCs. This improvement highlights the effective interaction between CPB NCs and ZIF, establishing the CPB/ZIF nanocomposite as a promising material for photocatalysis and optoelectronic applications.
溴化铯铅(CsPbBr,CPB)钙钛矿纳米晶体(NCs)因其出色的载流子迁移率、长扩散长度和高效的可见光吸收能力而备受关注,使其成为光催化、发光二极管(LED)、太阳能电池和光电探测器的理想候选材料。然而,其实际应用受到环境稳定性差的限制。为应对这一挑战,我们采用沸石咪唑酯骨架(ZIF),特别是ZIF-8,作为稳定基质,因其具有出色的热稳定性和化学稳定性、高比表面积以及多样的合成路线。通过使用优化的混合方法将热注入法制备的CPB NCs与ZIF-8整合,合成了CPB/ZIF-8纳米复合材料,确保了NCs的均匀分布。电子显微镜(EM)分析证实了NCs在ZIF-8表面的良好控制和均匀分布。此外,傅里叶变换红外光谱(FTIR)揭示了配体交换,即ZIF-8结构的咪唑连接体取代了NCs的配体。该过程促进了后者几乎外延附着,从而在整合过程中促进了有效的电荷相互作用。实际上,我们观察到在复合材料形成后,NCs的光致发光(PL)有92%的淬灭。这一发现进一步表明了有效的电荷分离和减少的电子-空穴复合。为了更深入地了解电荷转移机制,我们进行了电子顺磁共振(EPR)测量,以比较CPB和ZIF与CPB/ZIF复合材料的自由基生成能力。该复合材料表现出卓越的自由基生成能力,特别是羟基自由基(˙OH),表明电荷转移增强。这些发现表明该复合材料是光催化的极具潜力的候选材料。基于这些发现,我们通过染料降解实验探索了该复合材料的光催化能力,使用甲基橙(MO)和溴甲酚绿(BCG)作为模型染料。与原始的ZIF和CPB NCs相比,CPB/ZIF纳米复合材料表现出显著增强的光催化性能。具体而言,其对MO和BCG的降解率分别比CPB NCs高1.48倍和1.75倍。这种改进突出了CPB NCs与ZIF之间的有效相互作用,确立了CPB/ZIF纳米复合材料作为光催化和光电应用的有前途的材料。