Departamento de Ciencias de la Tierra, Facultad de Ciencias Químicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile; Millennium Nucleus for Metal Tracing Along Subduction, FCFM, Universidad de Chile, Santiago, Chile.
Instituto de Ciencias de la Ingeniería, Universidad de O'Higgins, Rancagua, Chile; Andean Geothermal Center of Excellence (CEGA), Universidad de Chile, Santiago, Chile.
Sci Total Environ. 2022 Aug 20;835:155470. doi: 10.1016/j.scitotenv.2022.155470. Epub 2022 Apr 23.
Northern Chile, NW Argentina, and SW Bolivia, ("the lithium triangle"), represent a world class reservoir of lithium, but this extraordinary enrichment is still controversial, and different processes have been invoked over the years, including, geothermal waters associated with active volcanism, leaching of soluble salts from volcanic rocks and leaching of lithium-rich clays. The Salar de Atacama (SDA) represents one of the richest reservoirs of Li in northern Chile and has been extensively studied during the past years. Most of the studies have been focused in the southern and southeastern portions, where the highest lithium concentrations have been reported. However, a comprehensive model of water recharge at SDA is still imprecise. We used a combination of isotopic methods, including δLi, δB and Sr/Sr ratios, with their chemical composition of a set of water samples from salt lakes, geothermal manifestations, groundwaters and surficial diluted waters (rivers and streams with low salinity). This study explores the hydrogeochemical processes controlling the water composition and solute distribution of the SDA. Our data confirm that weathering of the ignimbrites constitutes one of the most important processes in relation of solute origin in the region, where deep water-rock interactions would operate at high temperature, enhancing leaching of Li and other solutes. We determine that groundwater flow entering the SDA has undergone pre-enrichment processes (e.g., leak from Altiplano salt lakes; evaporite dissolution, among others) associated with salt inputs in the Western Cordillera. Our results provide a step forward to a comprehensive understanding of the processes that govern brine formation and lithium enrichment in a hyperarid environment, contributing to a sustainable exploration and exploitation of lithium in these environments.
智利北部、阿根廷西北部和玻利维亚西南部(“锂三角”)拥有世界级的锂资源储量,但这种非凡的富集仍然存在争议,多年来提出了不同的过程,包括与活火山有关的地热、可溶性盐从火山岩中浸出以及富含锂的粘土浸出。阿塔卡马盐湖(SDA)是智利北部锂储量最丰富的地区之一,近年来得到了广泛研究。大多数研究都集中在南部和东南部,那里报告了最高的锂浓度。然而,SDA 的综合补给模型仍然不够精确。我们使用了同位素方法的组合,包括 δLi、δB 和 Sr/Sr 比值,以及一系列盐湖、地热显示、地下水和地表稀释水(低盐度的河流和溪流)的水样的化学成分。本研究探讨了控制 SDA 水组成和溶质分布的水文地球化学过程。我们的数据证实,凝灰岩风化是该地区溶质来源最重要的过程之一,在该过程中,深部水-岩相互作用将在高温下进行,增强了 Li 和其他溶质的浸出。我们确定进入 SDA 的地下水已经经历了预富集过程(例如,来自高原盐湖的泄漏;蒸发盐溶解等),这些过程与西科迪勒拉山脉的盐分输入有关。我们的研究结果为深入了解控制干旱环境中卤水形成和锂富集的过程提供了一个新的视角,有助于在这些环境中实现锂的可持续勘探和开发。