Suppr超能文献

基于布里渊光时域分析(BOFDA)并采用简单机器学习方法的分布式湿度光纤传感器。

Distributed humidity fiber-optic sensor based on BOFDA using a simple machine learning approach.

作者信息

Karapanagiotis Christos, Hicke Konstantin, Wosniok Aleksander, Krebber Katerina

出版信息

Opt Express. 2022 Apr 11;30(8):12484-12494. doi: 10.1364/OE.453906.

Abstract

We report, to our knowledge for the first time, on distributed relative humidity sensing in silica polyimide-coated optical fibers using Brillouin optical frequency domain analysis (BOFDA). Linear regression, which is a simple and well-interpretable algorithm in machine learning and statistics, is utilized. The algorithm is trained using as features the Brillouin frequency shifts and linewidths of the fiber's multipeak Brillouin spectrum. To assess and improve the effectiveness of the regression algorithm, we make use of machine learning concepts to estimate the model's uncertainties and select the features that contribute most to the model's performance. In addition to relative humidity, the model is also able to simultaneously provide distributed temperature information addressing the well-known cross-sensitivity effects.

摘要

据我们所知,我们首次报道了利用布里渊光频域分析(BOFDA)对涂覆有二氧化硅聚酰亚胺的光纤进行分布式相对湿度传感。使用了线性回归,它是机器学习和统计学中一种简单且易于解释的算法。该算法以光纤多峰布里渊光谱的布里渊频移和线宽为特征进行训练。为了评估和提高回归算法的有效性,我们利用机器学习概念来估计模型的不确定性,并选择对模型性能贡献最大的特征。除了相对湿度外,该模型还能够同时提供分布式温度信息,解决了众所周知的交叉敏感效应问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验