Suppr超能文献

迈向纳米级量子光学成像:利用光子数分辨探测器对发射体进行计数

En route to nanoscopic quantum optical imaging: counting emitters with photon-number-resolving detectors.

作者信息

Li Shuo, Li Wenchao, Yakovlev Vladislav V, Kealy Allison, Greentree Andrew D

出版信息

Opt Express. 2022 Apr 11;30(8):12495-12509. doi: 10.1364/OE.454412.

Abstract

The fundamental understanding of biological pathways requires minimally invasive nanoscopic optical resolution imaging. Many approaches to high-resolution imaging rely on localization of single emitters, such as fluorescent molecules or quantum dots. Additionally, the exact determination of the number of such emitters in an imaging volume is essential for a number of applications; however, in standard intensity-based microscopy it is not possible to determine the number of individual emitters within a diffraction limited spot without initial knowledge of system parameters. Here we explore how quantum measurements of the emitted photons using photon number resolving detectors can be used to address this challenging task. In the proposed new approach, the problem of counting emitters reduces to the task of determining differences between the emitted photon distribution and the Poisson limit. We show that quantum measurements of the number of photons emitted from an ensemble of emitters enable the determination of both the number of emitters and the probability of emission. This method can be applied for any type of single-photon emitters. The scaling laws of this new approach are presented by the Cramer-Rao Lower Bounds, and this technique has great potential in quantum optical imaging with nanoscopic resolution.

摘要

对生物途径的基本理解需要微创纳米级光学分辨率成像。许多高分辨率成像方法依赖于单个发射器的定位,例如荧光分子或量子点。此外,对于许多应用而言,准确确定成像体积中此类发射器的数量至关重要;然而,在标准的基于强度的显微镜中,如果没有系统参数的初始知识,就无法确定衍射极限光斑内单个发射器的数量。在这里,我们探讨如何使用光子数分辨探测器对发射光子进行量子测量,以解决这一具有挑战性的任务。在提出的新方法中,计数发射器的问题简化为确定发射光子分布与泊松极限之间差异的任务。我们表明,对一组发射器发射的光子数进行量子测量能够确定发射器的数量和发射概率。这种方法可应用于任何类型的单光子发射器。这种新方法的缩放定律由克拉美-罗下界给出,并且该技术在具有纳米级分辨率的量子光学成像中具有巨大潜力。

相似文献

6
Superresolution microscopy with quantum emitters.量子点的超分辨率显微镜技术。
Nano Lett. 2013;13(12):5832-6. doi: 10.1021/nl402552m. Epub 2013 Nov 11.

本文引用的文献

1
Benchmarking photon number resolving detectors.基准测试光子数分辨探测器。
Opt Express. 2020 May 11;28(10):14839-14849. doi: 10.1364/OE.389619.
2
A tutorial on bridge sampling.桥抽样教程。
J Math Psychol. 2017 Dec;81:80-97. doi: 10.1016/j.jmp.2017.09.005.
6
Superresolution microscopy with quantum emitters.量子点的超分辨率显微镜技术。
Nano Lett. 2013;13(12):5832-6. doi: 10.1021/nl402552m. Epub 2013 Nov 11.
9
Imaging intracellular fluorescent proteins at nanometer resolution.以纳米分辨率成像细胞内荧光蛋白。
Science. 2006 Sep 15;313(5793):1642-5. doi: 10.1126/science.1127344. Epub 2006 Aug 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验