Gronau Quentin F, Sarafoglou Alexandra, Matzke Dora, Ly Alexander, Boehm Udo, Marsman Maarten, Leslie David S, Forster Jonathan J, Wagenmakers Eric-Jan, Steingroever Helen
Department of Psychology, University of Amsterdam, The Netherlands.
Department Mathematics and Statistics, Lancaster University, UK.
J Math Psychol. 2017 Dec;81:80-97. doi: 10.1016/j.jmp.2017.09.005.
The marginal likelihood plays an important role in many areas of Bayesian statistics such as parameter estimation, model comparison, and model averaging. In most applications, however, the marginal likelihood is not analytically tractable and must be approximated using numerical methods. Here we provide a tutorial on bridge sampling (Bennett, 1976; Meng & Wong, 1996), a reliable and relatively straightforward sampling method that allows researchers to obtain the marginal likelihood for models of varying complexity. First, we introduce bridge sampling and three related sampling methods using the beta-binomial model as a running example. We then apply bridge sampling to estimate the marginal likelihood for the Expectancy Valence (EV) model-a popular model for reinforcement learning. Our results indicate that bridge sampling provides accurate estimates for both a single participant and a hierarchical version of the EV model. We conclude that bridge sampling is an attractive method for mathematical psychologists who typically aim to approximate the marginal likelihood for a limited set of possibly high-dimensional models.
边际似然在贝叶斯统计的许多领域中都起着重要作用,如参数估计、模型比较和模型平均。然而,在大多数应用中,边际似然在解析上难以处理,必须使用数值方法进行近似。在此,我们提供一篇关于桥式抽样的教程(贝内特,1976;孟和王,1996),这是一种可靠且相对简单的抽样方法,它使研究人员能够获得不同复杂度模型的边际似然。首先,我们以贝塔 - 二项式模型为例,介绍桥式抽样及三种相关的抽样方法。然后,我们应用桥式抽样来估计期望效价(EV)模型(一种用于强化学习的流行模型)的边际似然。我们的结果表明,桥式抽样为单个参与者以及EV模型的分层版本都提供了准确的估计。我们得出结论,对于通常旨在近似有限一组可能高维模型的边际似然的数学心理学家而言,桥式抽样是一种有吸引力的方法。