Suppr超能文献

针对新型冠状病毒主要蛋白酶的计算方法在发现新型潜在抗病毒化合物中的应用综述

A Review of Computational Approaches Targeting SARS-CoV-2 Main Protease to the Discovery of New Potential Antiviral Compounds.

作者信息

Castillo-Garit Juan A, Cañizares-Carmenate Yudith, Pham-The Hai, Pérez-Doñate Virginia, Torrens Francisco, Pérez-Giménez Facundo

机构信息

Department Unidad de Toxicología Experimental, Universidad de Ciencias Médicas de Villa Clara, Santa Clara, 50200, Villa Clara, Cuba.

Unidad de Investigación de Diseño de Fármacos y Conectividad Molecular, Departamento de Química Física, Facultad de Farmacia, Universitat de València, Spain.

出版信息

Curr Top Med Chem. 2023;23(1):3-16. doi: 10.2174/2667387816666220426133555.

Abstract

The new pandemic caused by the coronavirus (SARS-CoV-2) has become the biggest challenge that the world is facing today. It has been creating a devastating global crisis, causing countless deaths and great panic. The search for an effective treatment remains a global challenge owing to controversies related to available vaccines. A great research effort (clinical, experimental, and computational) has emerged in response to this pandemic, and more than 125000 research reports have been published in relation to COVID-19. The majority of them focused on the discovery of novel drug candidates or repurposing of existing drugs through computational approaches that significantly speed up drug discovery. Among the different used targets, the SARS-CoV-2 main protease (M), which plays an essential role in coronavirus replication, has become the preferred target for computational studies. In this review, we examine a representative set of computational studies that use the M as a target for the discovery of small-molecule inhibitors of COVID-19. They will be divided into two main groups, structure-based and ligand-based methods, and each one will be subdivided according to the strategies used in the research. From our point of view, the use of combined strategies could enhance the possibilities of success in the future, permitting to development of more rigorous computational studies in future efforts to combat current and future pandemics.

摘要

由冠状病毒(SARS-CoV-2)引发的新型大流行已成为当今世界面临的最大挑战。它引发了一场毁灭性的全球危机,导致无数人死亡并造成极大恐慌。由于现有疫苗存在争议,寻找有效治疗方法仍是一项全球挑战。为应对这场大流行,出现了大量研究工作(临床、实验和计算方面),关于COVID-19已发表了超过125000份研究报告。其中大多数集中于通过显著加速药物发现的计算方法来发现新型候选药物或重新利用现有药物。在不同的作用靶点中,在冠状病毒复制中起关键作用的SARS-CoV-2主要蛋白酶(M)已成为计算研究的首选靶点。在本综述中,我们考察了一组以M为靶点发现COVID-19小分子抑制剂的代表性计算研究。它们将分为两个主要类别,即基于结构的方法和基于配体的方法,并且每个类别将根据研究中使用的策略进一步细分。在我们看来,使用组合策略可以增加未来成功的可能性,从而在未来抗击当前及未来大流行的努力中开展更严谨的计算研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验