Suppr超能文献

新冠肺炎患者在治疗前的严重程度进展及一种用于预测疾病严重程度的自我评估量表。

Progression of severity in coronavirus disease 2019 patients before treatment and a self-assessment scale to predict disease severity.

机构信息

Department of Biostatics, School of Public Health, Fudan University, Shanghai, 200032, China.

School of Public Health & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China.

出版信息

BMC Infect Dis. 2022 Apr 26;22(1):409. doi: 10.1186/s12879-022-07386-3.

Abstract

OBJECTIVES

This study aims to further investigate the association of COVID-19 disease severity with numerous patient characteristics, and to develop a convenient severity prediction scale for use in self-assessment at home or in preliminary screening in community healthcare settings.

SETTING AND PARTICIPANTS

Data from 45,450 patients infected with COVID-19 from January 1 to February 27, 2020 were extracted from the municipal Notifiable Disease Report System in Wuhan, China.

PRIMARY AND SECONDARY OUTCOME MEASURES

We categorized COVID-19 disease severity, based on The Chinese Diagnosis and Treatment Protocol for COVID-19, as "nonsevere" (which grouped asymptomatic, mild, and ordinary disease) versus "severe" (grouping severe and critical illness).

RESULTS

Twelve scale items-age, gender, illness duration, dyspnea, shortness of breath (clinical evidence of altered breathing), hypertension, pulmonary disease, diabetes, cardio/cerebrovascular disease, number of comorbidities, neutrophil percentage, and lymphocyte percentage-were identified and showed good predictive ability (area under the curve = 0·72). After excluding the community healthcare laboratory parameters, the remaining model (the final self-assessment scale) showed similar area under the curve (= 0·71).

CONCLUSIONS

Our COVID-19 severity self-assessment scale can be used by patients in the community to predict their risk of developing severe illness and the need for further medical assistance. The tool is also practical for use in preliminary screening in community healthcare settings. Our study constructed a COVID-19 severity self-assessment scale that can be used by patients in the community to predict their risk of developing severe illness and the need for further medical assistance.

摘要

目的

本研究旨在进一步探讨 COVID-19 疾病严重程度与众多患者特征的关系,并开发一种方便的严重程度预测量表,用于在家中自我评估或在社区医疗保健环境中进行初步筛查。

地点和参与者

从中国武汉市市报传染病系统中提取了 2020 年 1 月 1 日至 2 月 27 日期间感染 COVID-19 的 45450 名患者的数据。

主要和次要结果

我们根据《中国 COVID-19 诊断和治疗方案》将 COVID-19 疾病严重程度分为“非严重”(包括无症状、轻度和普通疾病)和“严重”(包括严重和危急疾病)。

结果

确定了 12 个量表项目-年龄、性别、病程、呼吸困难、呼吸急促(呼吸改变的临床证据)、高血压、肺部疾病、糖尿病、心血管/脑血管疾病、合并症数量、中性粒细胞百分比和淋巴细胞百分比-并显示出良好的预测能力(曲线下面积=0.72)。在排除社区医疗保健实验室参数后,剩余模型(最终自我评估量表)显示出相似的曲线下面积(=0.71)。

结论

我们的 COVID-19 严重程度自我评估量表可用于社区中的患者预测其发展为严重疾病的风险和进一步医疗援助的需求。该工具也可用于社区医疗保健环境中的初步筛查。我们研究构建了一种 COVID-19 严重程度自我评估量表,可用于社区中的患者预测其发展为严重疾病的风险和进一步医疗援助的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64d6/9044767/22b7b6c8c0cf/12879_2022_7386_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验