Suppr超能文献

三维空间中下颌骨形态不对称的自动评估。

Automated assessment of mandibular shape asymmetry in 3-dimensions.

机构信息

Department of Orthodontics, Peking University School and Hospital of Stomatology, and National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China; Facial Science, Murdoch Children's Research Institute, Melbourne, Australia.

Key Laboratory of Machine Perception (MOE), Department of Machine Intelligence, Peking University, Beijing, China.

出版信息

Am J Orthod Dentofacial Orthop. 2022 May;161(5):698-707. doi: 10.1016/j.ajodo.2021.07.014.

Abstract

INTRODUCTION

This study aimed to develop an automatic pipeline for analyzing mandibular shape asymmetry in 3-dimensions.

METHODS

Forty patients with skeletal Class I pattern and 80 patients with skeletal Class III pattern were used. The mandible was automatically segmented from the cone-beam computed tomography images using a U-net deep learning network. A total of 17,415 uniformly sampled quasi-landmarks were automatically identified on the mandibular surface via a template mapping technique. After alignment with the robust Procrustes superimposition, the pointwise surface-to-surface distance between original and reflected mandibles was visualized in a color-coded map, indicating the location of asymmetry. The degree of overall mandibular asymmetry and the asymmetry of subskeletal units were scored using the root-mean-squared-error between the left and right sides. These asymmetry parameters were compared between the skeletal Class I and skeletal Class III groups.

RESULTS

The mandible shape was significantly more asymmetrical in patients with skeletal Class III pattern with positional asymmetry. The condyles were identified as the most asymmetric region in all groups, followed by the coronoid process and the ramus.

CONCLUSIONS

This automated approach to quantify mandibular shape asymmetry will facilitate high-throughput image processing for big data analysis. The spatially-dense landmarks allow for evaluating mandibular asymmetry over the entire surface, which overcomes the information loss inherent in conventional linear distance or angular measurements. Precise quantification of the asymmetry can provide important information for individualized diagnosis and treatment planning in orthodontics and orthognathic surgery.

摘要

简介

本研究旨在开发一种用于分析三维下颌骨形态不对称的自动分析流水线。

方法

共纳入 40 例骨骼 I 类模式患者和 80 例骨骼 III 类模式患者。使用 U-net 深度学习网络自动从锥形束计算机断层扫描图像中分割下颌骨。通过模板映射技术,在颌骨表面自动识别了 17415 个均匀采样的准地标。经过与稳健 Procrustes 叠加的对齐后,通过彩色编码地图直观显示原始和反射下颌骨之间的逐点表面到表面距离,指示不对称的位置。使用左右两侧之间的均方根误差来评分整体下颌骨不对称和亚骨骼单位的不对称程度。比较骨骼 I 类和骨骼 III 类组之间的这些不对称参数。

结果

骨骼 III 类模式患者的下颌骨形状明显更不对称,存在位置不对称。在所有组中,髁突被确定为最不对称的区域,其次是喙突和下颌支。

结论

这种用于量化下颌骨形状不对称的自动化方法将促进用于大数据分析的高通量图像处理。密集的空间地标允许评估整个表面的下颌骨不对称,克服了传统线性距离或角度测量固有的信息丢失。不对称的精确量化可以为正畸和正颌手术中的个体化诊断和治疗计划提供重要信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验