Suppr超能文献

一种基于多中心数据验证的心电 fQRS 定量的机器学习算法。

A machine learning algorithm for electrocardiographic fQRS quantification validated on multi-center data.

机构信息

Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Leuven, Belgium.

Department of Cardiovascular Diseases, Experimental Cardiology, KU Leuven, Leuven, Belgium.

出版信息

Sci Rep. 2022 Apr 26;12(1):6783. doi: 10.1038/s41598-022-10452-0.

Abstract

Fragmented QRS (fQRS) is an electrocardiographic (ECG) marker of myocardial conduction abnormality, characterized by additional notches in the QRS complex. The presence of fQRS has been associated with an increased risk of all-cause mortality and arrhythmia in patients with cardiovascular disease. However, current binary visual analysis is prone to intra- and inter-observer variability and different definitions are problematic in clinical practice. Therefore, objective quantification of fQRS is needed and could further improve risk stratification of these patients. We present an automated method for fQRS detection and quantification. First, a novel robust QRS complex segmentation strategy is proposed, which combines multi-lead information and excludes abnormal heartbeats automatically. Afterwards extracted features, based on variational mode decomposition (VMD), phase-rectified signal averaging (PRSA) and the number of baseline-crossings of the ECG, were used to train a machine learning classifier (Support Vector Machine) to discriminate fragmented from non-fragmented ECG-traces using multi-center data and combining different fQRS criteria used in clinical settings. The best model was trained on the combination of two independent previously annotated datasets and, compared to these visual fQRS annotations, achieved Kappa scores of 0.68 and 0.44, respectively. We also show that the algorithm might be used in both regular sinus rhythm and irregular beats during atrial fibrillation. These results demonstrate that the proposed approach could be relevant for clinical practice by objectively assessing and quantifying fQRS. The study sets the path for further clinical application of the developed automated fQRS algorithm.

摘要

碎裂 QRS 波(fQRS)是一种心肌传导异常的心电图(ECG)标志物,其特征是 QRS 复合波中出现额外的切迹。在患有心血管疾病的患者中,fQRS 的存在与全因死亡率和心律失常风险增加相关。然而,目前的二进制视觉分析容易受到观察者内和观察者间的变异性影响,并且在临床实践中不同的定义存在问题。因此,需要对 fQRS 进行客观量化,这可能进一步改善这些患者的风险分层。我们提出了一种用于 fQRS 检测和量化的自动化方法。首先,提出了一种新的稳健 QRS 复合波分段策略,该策略结合了多导联信息,并自动排除异常心跳。然后,基于变分模态分解(VMD)、相位校正信号平均(PRSA)和心电图的基线穿越次数提取特征,使用机器学习分类器(支持向量机)来区分基于多中心数据和结合临床环境中使用的不同 fQRS 标准的碎裂和非碎裂 ECG 迹线。最佳模型是在两个独立的先前注释数据集的组合上进行训练的,与这些视觉 fQRS 注释相比,分别获得了 0.68 和 0.44 的 Kappa 评分。我们还表明,该算法可用于窦性心律和心房颤动期间的不规则心跳。这些结果表明,该方法可通过客观评估和量化 fQRS 为临床实践提供参考。该研究为开发的自动化 fQRS 算法的进一步临床应用奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14e3/9043208/f0689dd87fe2/41598_2022_10452_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验