School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
The Gene and Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, United States of America.
Commun Biol. 2022 Apr 26;5(1):390. doi: 10.1038/s42003-022-03335-7.
Controlling the orientation of redox enzymes on electrode surfaces is essential in the development of direct electron transfer (DET)-based bioelectrocatalytic systems. The electron transfer (ET) distance varies according to the enzyme orientation when immobilized on an electrode surface, which influences the interfacial ET rate. We report control of the orientation of carbon monoxide dehydrogenase (CODH) as a model enzyme through the fusion of gold-binding peptide (gbp) at either the N- or the C-terminus, and at both termini to strengthen the binding interactions between the fusion enzyme and the gold surface. Key factors influenced by the gbp fusion site are described. Collectively, our data show that control of the CODH orientation on an electrode surface is achieved through the presence of dual tethering sites, which maintains the enzyme cofactor within a DET-available distance (<14 Å), thereby promoting DET at the enzyme-electrode interface.
控制氧化还原酶在电极表面的取向对于开发基于直接电子转移(DET)的生物电化学催化体系至关重要。当固定在电极表面上时,固定化酶的取向会影响电子转移(ET)距离,从而影响界面 ET 速率。我们报告了通过在 N 或 C 末端以及两端融合金结合肽(gbp)来控制一氧化碳脱氢酶(CODH)作为模型酶的取向,以增强融合酶与金表面之间的结合相互作用。描述了受 gbp 融合位点影响的关键因素。总的来说,我们的数据表明,通过存在双重连接位点来实现 CODH 在电极表面的取向控制,这可以将酶辅因子保持在 DET 可用距离(<14 Å)内,从而促进酶-电极界面处的 DET。