School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
ACS Appl Mater Interfaces. 2023 Aug 30;15(34):40355-40368. doi: 10.1021/acsami.3c03077. Epub 2023 Aug 8.
The accomplishment of concurrent interenzyme chain reaction and direct electric communication in a multienzyme-electrode is challenging since the required condition of multienzymatic binding conformation is quite complex. In this study, an enzyme cascade-induced bioelectrocatalytic system has been constructed using solid binding peptide (SBP) as a molecular binder that coimmobilizes the invertase (INV) and flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase gamma-alpha complex (GDHγα) cascade system on a single electrode surface. The SBP-fused enzyme cascade was strategically designed to induce diverse relative orientations of coupling enzymes while enabling efficient direct electron transfer (DET) at the FAD cofactor of GDHγα and the electrode interface. The interenzyme relative orientation was found to determine the intermediate delivery route and affect overall chain reaction efficiency. Moreover, interfacial DET between the fusion GDHγα and the electrode was altered by the binding conformation of the coimmobilized enzyme and fusion INVs. Collectively, this work emphasizes the importance of interenzyme orientation when incorporating enzymatic cascade in an electrocatalytic system and demonstrates the efficacy of SBP fusion technology as a generic tool for developing cascade-induced direct bioelectrocatalytic systems. The proposed approach is applicable to enzyme cascade-based bioelectronics such as biofuel cells, biosensors, and bioeletrosynthetic systems utilizing or producing complex biomolecules.
在多酶电极中实现协同的酶链反应和直接电通信具有挑战性,因为多酶结合构象的所需条件非常复杂。在这项研究中,使用固体结合肽 (SBP) 作为分子结合物构建了酶级联诱导的生物电化学催化系统,该结合物将蔗糖酶 (INV) 和黄素腺嘌呤二核苷酸 (FAD) 依赖性葡萄糖脱氢酶 γ-α 复合物 (GDHγα) 级联系统共固定在单个电极表面上。SBP 融合酶级联系统被策略性地设计为诱导偶联酶的不同相对取向,同时使 GDHγα 的 FAD 辅因子和电极界面处的直接电子转移 (DET) 高效进行。发现酶间相对取向决定了中间产物的传递途径,并影响整体链反应效率。此外,共固定酶和融合 INV 的结合构象改变了融合 GDHγα 与电极之间的界面 DET。总之,这项工作强调了在电催化系统中引入酶级联时酶间取向的重要性,并展示了 SBP 融合技术作为开发级联诱导直接生物电化学催化系统的通用工具的功效。所提出的方法适用于基于酶级联的生物电子学,例如利用或生产复杂生物分子的生物燃料电池、生物传感器和生物电化学合成系统。