Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
Glia. 2022 Jul;70(7):1426-1449. doi: 10.1002/glia.24183. Epub 2022 Apr 26.
Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUS variant (mtFUS) causes neuronal damage in vivo. We show that restricted expression of mtFUS in astrocytes is sufficient to induce death of spinal motor neurons leading to motor deficits through upregulation of TNFα. We further demonstrate that TNFα is a key toxic molecule as expression of mtFUS in TNFα knockout animals does not induce pathogenic changes. Accordingly, in mtFUS-transduced animals, administration of TNFα neutralizing antibodies prevents neurodegeneration and motor dysfunction. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS and establish, for the first time, that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo. Our work identifies TNFα as the critical driver of mtFUS-astrocytic toxicity and demonstrates therapeutic success of targeting TNFα to attenuate motor neuron dysfunction and death. Ultimately, through defining and subsequently targeting this toxic mechanism, we provide a viable FUS-ALS specific therapeutic strategy, which may also be applicable to sporadic ALS where FUS activity and cellular localization are frequently perturbed.
导致肌萎缩侧索硬化症(ALS)的基因突变,即一种进行性致命的运动神经元疾病,通常存在于广泛表达的基因中。除了运动神经元内的直接缺陷外,越来越多的证据表明,非神经元细胞的功能障碍也是疾病的重要驱动因素。以前,我们证明肉瘤融合(FUS)DNA/RNA 结合蛋白的突变通过激活 NF-κB 途径和释放促炎细胞因子 TNFα,在体外诱导星形胶质细胞的神经毒性表型。在这里,我们开发了一种脊髓内注射模型来测试 ALS 致病 FUS 变体(mtFUS)在星形胶质细胞中的特异性表达是否在体内引起神经元损伤。我们表明,mtFUS 在星形胶质细胞中的受限表达足以通过上调 TNFα诱导脊髓运动神经元死亡,从而导致运动功能障碍。我们进一步证明 TNFα 是一种关键的毒性分子,因为在 TNFα 敲除动物中表达 mtFUS 不会诱导致病变化。因此,在 mtFUS 转导的动物中,TNFα 中和抗体的给药可防止神经退行性变和运动功能障碍。总之,这些研究加强了证据表明星形胶质细胞在 ALS 中起作用,并首次建立了 FUS-ALS 星形胶质细胞在体内诱导运动神经元产生致病性变化。我们的工作确定 TNFα 是 mtFUS-星形胶质毒性的关键驱动因素,并证明了针对 TNFα 的治疗成功,可减轻运动神经元功能障碍和死亡。最终,通过定义并随后针对这种毒性机制,我们提供了一种可行的 FUS-ALS 特异性治疗策略,该策略也可能适用于 FUS 活性和细胞定位经常受到干扰的散发性 ALS。